Построй графики этих уравнений на координатной плоскости XOY. 2|x|+3|y| = 6 - этот график симметричен относительно оси ОХ и симметричен относительно оси ОУ, т.к. замены x на -x, y на -y фактически не изменяют само уравнение. Фактически - это ромб, диагоналями которого являются оси OX и OY. x^2 + y^2 = a, график этого уравнения - это окружность с центром в начале координат и радиусом R = . При различном радиусе этой окружности будет разное количество пересечений ромба с окружностью. Нужно исследовать этот вопрос геометрически.
2|x|+3|y| = 6 - этот график симметричен относительно оси ОХ и симметричен относительно оси ОУ, т.к. замены x на -x, y на -y фактически не изменяют само уравнение. Фактически - это ромб, диагоналями которого являются оси OX и OY.
x^2 + y^2 = a, график этого уравнения - это окружность с центром в начале координат и радиусом R = .
При различном радиусе этой окружности будет разное количество пересечений ромба с окружностью. Нужно исследовать этот вопрос геометрически.
(2а-5)² ≤ 6а² - 20а + 25
(2а-5)² - (6а² - 20а + 25) ≤ 0
(2а)² - 2·2а·5 + 5² - 6а² + 20а - 25 ≤ 0
4а² - 20а + 25 - 6а² + 20а - 25 ≤ 0
- 2а² ≤ 0
При любом значении переменной а значение а² ≥ 0 ( положительное)
Произведение отрицательного (-2) и положительного а² всегда отрицательно или равно 0.
- 2а² ≤ 0 при любом значении переменной а.
Что и требовалось доказать.
2)
(4р-1)(р+1) - (р-3)(р+3) > 3(p² + p)
4p² + 4p - p - 1 -(p² - 3²) > 3(p² + p)
4p² + 3p - 1 - p² + 9 > 3(p² + p)
3p² + 3p + 8 > 3p² + 3p
3p² + 3p + 8 - 3p² -3p > 0
8 > 0 при любом значении переменной р.
Что и требовалось доказать.