Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
№1
Умножим первое ур-ние на 3, получим такую систему ур-ний
9х+3ау=36
9х-15у=36
вычтем второе из первого, получим
3ау+15у=0
или
3(а+5)у=0 делим на 3
(а+5)у=0
только два варианта решений:
1) а+5=0 а=-5 0*у=0 => у-любое - бесконечно множество решений
и х- тоже любое - тоже бесконечно множество решений
или
2) а+5≠0 у=0/(а+5) => у=0 - единственное решение
и х=4 - тоже единственное решение
значит, система всегда имеет решения (или одно или бесконечно много )
ответ: Г ) таких значений а не существует, при которых система не имеет решений - решения есть при любых а - или одно или бесконечно много
№2
2х-7у=6
8х-28у=24
разделим второе на 4, получим
2х-7у=6
2х-7у=6
получили фактически только одно единственное уравнение с двумя неизвестными
2х-7у=6
значения, например, у можно взять любое, тогда х вычисляется из уравнения
2х=6+7у
х=3+(7/2)у
ответ: Г ) у системы бесконечно много решений