Пусть х - скорость Николь, тогда 2х - скорость Бренды и 4х - скорость Сандры. Пусть также t1 - время от начала забега, через которое встретились Сандра и Бренда, t2 - время от начала забега, через которое встретились Сандра и Николь и S - длина дорожки. Тогда, т.к. скорость сближения Сандры и Бренды равна 4х+2х=6х, а до момента встречи они вместе пробежали общую дистанцию равную одному кругу, то 6х*t1=S. Аналогично, скорость сближения Сандры и Николь равна 4х+х=5х, поэтому 5х*t2=S. Далее, т.к. от момента встречи с Брендой до момента встречи с Николь Сандра пробежала 200 м со скоростью 4х, то 4x*(t2-t1)=200. Таким образом, получаем систему из трех уравнений: 6х*t1=S; 5x*t2=S; 4x*(t2-t1)=200. Из первых двух уравнений t1=S/(6x), t2=S/(5x). Значит, 4х*(S/(5x)-S/(6x))=200. Отсюда 4х*S/(30x)=200 2S/15=200 S/15=100 S=15*100=1500 м. ответ: (В) длина дорожки равна 1500 м.
Y2 = y(a2) + y'(a2)*(x - a2) - касательная через точку М
P(a1;y1), M(a2;y2)
y = (x-2)/(x-1)
y' = (x-1 - (x-2))/(x-1)^2 = (x - 1 - x + 2)/(x-1)^2 = 1/(x-1)^2
y(a1) = (a1 - 2)/(a1 - 1)
y'(a1) = 1/(a1 - 1)^2
y(a2) = (a2 - 2)/(a2 - 1)
y'(a2) = 1/(a2 - 1)^2
Y1 || y=x, коэффициенты при х равны, x>0
Y2 || y=x, коэффициенты при х равны, x<0
Y1 = (a1 - 2)/(a1 - 1) + (x - a1)/(a1 - 1)^2
Y2 = (a2 - 2)/(a2 - 1) + (x - a2)/(a2 - 1)^2
1/(a1 - 1)^2 = 1, a1 - 1 = +-1, a1=2, a1=0
1/(a2 - 1)^2 = 1, a2 = 0, a2=2
a1 = 2, Y1=0 + (x-2) = x - 2
a2 = 0, Y2 = 2 + x = x + 2
y1(2) = 0, P(2;0)
y2(0) = 2, M(0;2)
6х*t1=S;
5x*t2=S;
4x*(t2-t1)=200.
Из первых двух уравнений t1=S/(6x), t2=S/(5x). Значит,
4х*(S/(5x)-S/(6x))=200. Отсюда
4х*S/(30x)=200
2S/15=200
S/15=100
S=15*100=1500 м.
ответ: (В) длина дорожки равна 1500 м.