1) 17ⁿ - 1 = (17 - 1)(17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) = 16( 17ⁿ¯¹ + 17ⁿ¯² + 17ⁿ¯³ + ... + 17² + 17 + 1) Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1). Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1). Т.к. один из множителей делится на 14, то и все выражение делится на 14.
Пусть х км/ч - это скорость, с которой ехал велосипедист из пункта А в пункт В
Так как длина путь из пункта А в пункт В = 27 километров.
Тогда путь из пункста А в пункт В он проехал за 27/х(часов) - потому что на обратном пути велосипедист уменьшил скорость на 3км/ч, следовательно:
х-3км/ч - скорость велосипедиста.(потому что обратный путь был короче на 7 километров), то есть он равен:
27-7=20(км), следовательно:
20/(х-3) часов - это он потратил на обратный путь.
А по условию на обратный путь он затратил всего 10минут, а это 1/6 часа меньше.
Составим уравнение:
27/х-1/6=20/(х-3)
Надо обе части умножить на 6х*(х-3) не равное нулю, тоесть х≠0 и х≠3(ЭТО НАМ НЕ ПОДХОДИТ)=>
162*(х-3)-х*(х-3)=120х
162х-486-х2+3х-120=0
Теперь на всё это умножить на (-1) и привести конечно-же подобные слогаемые.
х2-45х+486=0
Всё получим мы через теорему Виета:
х1+х2=45
х1*х2=486
х1=18
х2=27
Либо через Дискриминант, то будет так.
Дискриминант=(-45)2-4*2*486=2025+1944=3969
х1,2=54(плюс/минус)63/4
х1 = 18
х2 = 27
Здесь мы видим, что оба корня нам подходят.
Итак велосипедист ехал со скоростью 18 км/ч или со скоростью 27 км/ч из пункта А в пункт В.
ответ: 18км/ч, 27км/ч.
Т.к. один из множителей делится на 16, то и все выражение делится на 16.
2) 23²ⁿ+¹ + 1 = (23 + 1)(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1) = 24(23²ⁿ - 23²ⁿ¯¹ + 23²ⁿ¯2 - ... + 23² - 23 + 1).
Т.к. один из множителей делится на 24, то и все выражение делится на 24.
3) 13²ⁿ+¹ + 1 = (13 + 1)( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1) = 14( 13²ⁿ - 13²ⁿ¯¹ + 13²ⁿ¯² - ... + 13² - 13 + 1).
Т.к. один из множителей делится на 14, то и все выражение делится на 14.