1. График функции - квадратная парабола с коэффициентом сжатия по оси Х, равным 3.5, направленная ветвями вниз и смещенная по оси Y вниз на 2.6. График функции симметричен относительно оси Y и функция принимает только отрицательные значения, поэтому ни одной точки графика функции нет в I и II четвертях. 2. Выполним преобразования. y=x²-12x+34=(x²-2*6x+6²)+34-6²=(x-6)²+34-36=(x-6)²-2 График функции - квадратная парабола, направленная ветвями вверх, смещенная по оси Y вниз на 2 и смещенная по оси Х вправо на 6. Найдем точку пересечения графика функции с осью Y, для чего положим х=0 ⇒ y=34. Следовательно, ни одной точки графика функции нет в III четверти.
Примем
S=12, км - путь туристов туда и обратно;
V1, км/час - скорость лодки (скорость в стоячей воде);
V2=3 км/час - скорость течения
тогда
S/(V1+V2)+S/(V1-V2)=3
12/(V1+3)+12/(V1-3)=3
[12*(V1-3)+12*(V1+3)]-3*(V1+3)*(V1-3)=0
12*V1-36+12*V1+36-3*(V1^2-3*V1+3*V1-9)=0
12*V1+12*V1-3*V1^2+27=0
-3*V1^2+24*V1+27=0
Решаем при дискриминанта (см. ссылку)
V1(1)=9
V1(2)=-1
скорость не может быть отрицательная
тогда
скорость лодки в стоячей воде = 9 км/час
проверим
12/(9+3)+12/(9-3)=3
12/12+12/6=3
1+2=3
3=3
Решение верно.
График функции симметричен относительно оси Y и функция принимает только отрицательные значения, поэтому ни одной точки графика функции нет в I и II четвертях.
2. Выполним преобразования.
y=x²-12x+34=(x²-2*6x+6²)+34-6²=(x-6)²+34-36=(x-6)²-2
График функции - квадратная парабола, направленная ветвями вверх, смещенная по оси Y вниз на 2 и смещенная по оси Х вправо на 6.
Найдем точку пересечения графика функции с осью Y, для чего положим х=0 ⇒ y=34. Следовательно, ни одной точки графика функции нет в III четверти.