Решаем с использованием формулы разности квадратов: a² - b² = (a - b)(a + b)
1) (х+1)² = 64 (х+1)² - 64 = 0 (х+1)² - 8² = 0 (х+1 - 8)(х+1 + 8) = (х - 7) (х + 9) = 0 Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем каждый из множителей к нулю. х - 7 = 0 х₁ = 7
Решала методом сложения. По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы, сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное. В первом задании, например, я домножила первое уравнение на -3, чтобы далее и в первом, и во втором уравнении системы было 6х и -6х. Это сделано для того, чтобы при сложении этих уравнений иксы полностью уничтожились, и можно было решить их относительно У. Ну а потом по старинке: найденный У подставляем в любое из уравнений системы и получаем уже Х.
a² - b² = (a - b)(a + b)
1)
(х+1)² = 64
(х+1)² - 64 = 0
(х+1)² - 8² = 0
(х+1 - 8)(х+1 + 8) =
(х - 7) (х + 9) = 0
Произведение равно нулю, если хотя бы один из множителей равен нулю.
Приравниваем каждый из множителей к нулю.
х - 7 = 0
х₁ = 7
х + 9 = 0
х₂ = - 9
Проверка
х₁ = 7
(7 + 1)² = 64
8² = 64
64 = 64
х₂ = - 9
(- 9 + 1)² = 64
(-8)² = 64
64 = 64
ответ: х₁ = 7; х₂ = - 9.
2)
Второе уравнение решаем аналогично.
(4х-9)² = 49
(4х-9)² - 49 = 0
(4х-9)² - 7² = 0
(4х-9 - 7)(4х-9 + 7) =
(4х - 16)(4х -2) = 0
Произведение равно нулю, если хотя бы один из множителей равен нулю.
Приравниваем каждый из множителей к нулю.
4х - 16 = 0
4х=16
х= 16 : 4
х₁ = 4
4х - 2 = 0
4х = 2
х = 2 : 4
х₂ = 0,5
Проверка
х₁ = 4
(4·4-9)² = 49
7² = 49
49 = 49
х₂ = 0,5
(4 · 0,5 -9)² = 49
(-7)² = 49
49 = 49
ответ: х₁ = 4; х₂ = 0,5.
По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы, сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.
В первом задании, например, я домножила первое уравнение на -3, чтобы далее и в первом, и во втором уравнении системы было 6х и -6х. Это сделано для того, чтобы при сложении этих уравнений иксы полностью уничтожились, и можно было решить их относительно У. Ну а потом по старинке: найденный У подставляем в любое из уравнений системы и получаем уже Х.