переносим все слагаемые, кот содержат у в левую часть, без у - в правую, при переносе из одной стороны неравенства в другую, меняем знак на противоположный
8у-5у-3у < 5+2
0 < 7 верно для любого у
у∈(-∞; +∞)
б)
6(1-у) - 8(3у+1)+30у > -5
раскрываем скобки
6 - 6y - 24y -8 +30y > -5
переносим все слагаемые, кот содержат у в левую часть, без у - в правую, при переносе из одной стороны неравенства в другую, меняем знак на противоположный
а) у∈(-∞; +∞)
б) у∈(-∞; +∞)
Объяснение:
а)
2(4у-1)-5у < 3y+5
раскрываем скобки
8y-2 - 5y < 3y+5
переносим все слагаемые, кот содержат у в левую часть, без у - в правую, при переносе из одной стороны неравенства в другую, меняем знак на противоположный
8у-5у-3у < 5+2
0 < 7 верно для любого у
у∈(-∞; +∞)
б)
6(1-у) - 8(3у+1)+30у > -5
раскрываем скобки
6 - 6y - 24y -8 +30y > -5
переносим все слагаемые, кот содержат у в левую часть, без у - в правую, при переносе из одной стороны неравенства в другую, меняем знак на противоположный
-6y -24y +30y > -5 -6 +8
0 > -3 верно для любого у
у∈(-∞; +∞)
Формула корней квадратного уравнения: x₁₂ = (-b±√D)/2a;
Дискриминант D = b² - 4ac;
1) -0,5x² -7x - 5 = 0;
a = -0,5; b = -7; c = -5;
D = 7² - 4*(-0,5)*(-5) = 49 - 10 = 39; D>0, 2 корня
x₁ = (7 + √39) / 2*(-0,5) = -7-√39;
x₂ = (7 - √39) / 2*(-0,5) = -7+√39;
2) 2/3 * x² + 3/5 *x - 3/4 = 0;
a = 2/3; b = 3/5; c = -3/4;
D = 9/25 + 4* 2/3 * 3/4 = 9/25 + 2 = 59/25; D>0, 2 корня
x₁ = (-3/5 + √59 / 5) / 4/3 = (-3 + √59)*3/20 =( -9+3√59)/20;
x₂ = (-3/5 - √59 / 5) / 4/3= (-3 - √59)*3/20 = ( -9-3√59)/20.