Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^3+3*x-5. Результат: y=-5. Точка: (0, -5)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^3+3*x-5 = 0 Решаем это уравнение и его корни будут точками пересечения с X: x=-(-5/2 + sqrt(29)/2)**(1/3) + (-5/2 + sqrt(29)/2)**(-1/3)≈1,15417. Точка: (1,15417, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=3*x^2 + 3=0 Решаем это уравнение и его корни будут экстремумами: x = √-1 - нет решения и нет экстремумов. Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x=0 Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, -5)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [0, oo)Выпуклая на промежутках: (-oo, 0]Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^3+3*x-5, x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^3+3*x-5, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^3+3*x-5/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^3+3*x-5/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^3+3*x-5 = -x^3 - 3*x - 5 - Нетx^3+3*x-5 = -(-x^3 - 3*x - 5) - Нетзначит, функция не является ни четной ни нечетной
1)с 10.00 до 13.00 - 3 часа 3-1=2 часа - время в пути всего 2) Пусть собственная скорость катера - х км/ч . Время в пути против течения реки - 8/(х-2) ч. Время в пути по течению реки - 30/(х+2) ч. Уравнение: 8/(х-2) + 30/(х+2) = 2 8(х+2) +30(х-2)= 2(х-2)(х+2) 8х+16+30х-60= 2х²-8 38х-44=2х²-8 2х²-8-38х+44=0 2х² -38х+36=0 :2 х²-19х+18=0 D= 361-4*18*1= 361-72=289 x₁= (19+17)/2 = 18 - собственная скорость катера (Vc) x₂= (19-17)/2 =1 - не удовлетворяет условию задачи, т.к. собственная скорость катера не может быть меньше скорости течения реки.
в x^3+3*x-5.
Результат: y=-5. Точка: (0, -5)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^3+3*x-5 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=-(-5/2 + sqrt(29)/2)**(1/3) + (-5/2 + sqrt(29)/2)**(-1/3)≈1,15417. Точка: (1,15417, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=3*x^2 + 3=0
Решаем это уравнение и его корни будут экстремумами:
x = √-1 - нет решения и нет экстремумов.
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=6*x=0
Решаем это уравнение и его корни будут точками, где у графика перегибы:x=0. Точка: (0, -5)Интервалы выпуклости, вогнутости:Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов:Вогнутая на промежутках: [0, oo)Выпуклая на промежутках: (-oo, 0]Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^3+3*x-5, x->+oo = oo, значит горизонтальной асимптоты справа не существуетlim x^3+3*x-5, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^3+3*x-5/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^3+3*x-5/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^3+3*x-5 = -x^3 - 3*x - 5 - Нетx^3+3*x-5 = -(-x^3 - 3*x - 5) - Нетзначит, функция не является ни четной ни нечетной
3-1=2 часа - время в пути всего
2)
Пусть собственная скорость катера - х км/ч .
Время в пути против течения реки - 8/(х-2) ч.
Время в пути по течению реки - 30/(х+2) ч.
Уравнение:
8/(х-2) + 30/(х+2) = 2
8(х+2) +30(х-2)= 2(х-2)(х+2)
8х+16+30х-60= 2х²-8
38х-44=2х²-8
2х²-8-38х+44=0
2х² -38х+36=0 :2
х²-19х+18=0
D= 361-4*18*1= 361-72=289
x₁= (19+17)/2 = 18 - собственная скорость катера (Vc)
x₂= (19-17)/2 =1 - не удовлетворяет условию задачи, т.к. собственная скорость катера не может быть меньше скорости течения реки.
ответ : V c = 18 км/ч