Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими ее можно задать:
Табличный быстро определить конкретные значения без дополнительных измерений или вычислений.
Графический — наглядно.
Аналитический — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
Словесный .
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида Область определения область определения выглядит так
х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
3)x=
4)x=
Объяснение:
3)
-=
Умножаем обе части():
3(6x-1)-4(3x+1)=3
Распределить 3 и 4 через скобки:
18x-3-4(3x+1)=3
18x-3- 12x - 4=3
Привести подобные члены:
6x-3-4=3
6x-7=3
Переносим постоянную(-7) в правую часть и сменяем ее знак:
6x=3+7
Вычисляем:
6x=10
Разделим обе стороны на 6:
x=
4)
+ = 1
Раскрываем скобки:
+ = 1
Умножаем обе части уравнения на 4:
2(2x-)+3x+2
Распределяем 2 через скобки(2(2x-)):
4x-2+3x+2
Поскольку сумма двух противоположных величин равна нулю, надо удалить их из выражения(-2 и 2
4x+3x=4
7x=4
Разделить обе стороны на 7:
x=
Надеюсь
:)
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими ее можно задать:
Табличный быстро определить конкретные значения без дополнительных измерений или вычислений.
Графический — наглядно.
Аналитический — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
Словесный .
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида Область определения область определения выглядит так
х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.