Найдите количество двузначных натуральных чисел, содержащихся в каждом из промежутков: [11; 17], [0; 12], (-∞; 16], [0; 10), (-∞; 14), (92; +∞), [12; 19), (0; 13], (13; 20], (-∞; 26]. все найденные результаты выпишите в строчку через запятую.
а) какой ряд данных получился?
б) укажите наибольшее число в ряде данных.
в) чему равен размах ряда?
г) найдите объём ряда данных.
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.
По озеру лодка затратила 10/x часов, а против течения и по течению - 24/(x+3) часов и 24/(x-3) часов, соответственно.Возвращаясь домой тем же маршрутом, они затратили на путь против течения реки столько же времени, сколько на путь по течению реки и по озеру.
Составим и решим уравнение:
Решая квадратное уравнение, достанем следующие корни
- не удовлетворяет условию
км/ч - собственная скорость лодки
Скорость лодки по течению равна: 15 + 3 = 18 (км/ч)
ответ: 18 км/ч.