Возведем обе части уравнения в квадрат, но с условием, что правая часть уравнения тоже неотрицательна, как и левая: ОДЗ: {x+2>=0 x>=-2 {x-28>=0 x>=28 Т.О., x e [28; + беск.)
x+2=(x-28)^2 x+2=x^2-56x+784 x+2-x^2+56x-784=0 -x^2+57x-782=0 x^2-57x+782=0 D=(-57)^2-4*1*782=121 x1=(57-11)/2=23 - посторонний корень, не входящий в ОДЗ x2=(57+11)/2=34 ответ: x=34
Можно графически решить это уравнение: построить график функции y=V(x+2) и график функции y=x-28. Абсцисса точки пересечения двух графиков и будет корнем уравнения.
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
ОДЗ:
{x+2>=0 x>=-2
{x-28>=0 x>=28
Т.О., x e [28; + беск.)
x+2=(x-28)^2
x+2=x^2-56x+784
x+2-x^2+56x-784=0
-x^2+57x-782=0
x^2-57x+782=0
D=(-57)^2-4*1*782=121
x1=(57-11)/2=23 - посторонний корень, не входящий в ОДЗ
x2=(57+11)/2=34
ответ: x=34
Можно графически решить это уравнение: построить график функции
y=V(x+2) и график функции y=x-28. Абсцисса точки пересечения двух графиков и будет корнем уравнения.
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.