Берешь это в табличку : y| 1 | 3 | x| 2 | 3 | Если y = 1, то x = 2; если y = 3, то x = 3. Делала так: Подбирала любое значение y и находила значение x, как в любом уравнении. На примере первого : 1=2x-3; x=2. Во втором так же. Далее на координатной плоскости отмечаем точки с координаты и, полученными ранее. Например точка K ( 2;1) и точка L (3;3). Обратите внимание, что в ответе координаты точки А мы пишем именно в таком порядке, т.к. На первом месте значение х, а на втором у. Когда вы отметили точки, вы вполне можете провести через них прямую, сделайте это. И лучше провести ее через всю плоскость, а не от точки до точки. Удачи!
ответ: Решение задачи, решение уравнения прикреплю в фото.
Объяснение руб.) - стоит 4 альбома и 2 ластика (2 альб.*2+1 ласт.*2)
2) 86-66=20 (руб.) - стоит альбом (4 альб. + 2 ласт. - 3 альб.-2 ласт.)
3) 20*2=40 (руб.) - стоят два альбома.
4) 43-40=3 (руб.) - стоит один ластик.
ОТВЕТ: стоимость альбома 20 рублей, стоимость ластика 3 рубля Пусть х рублей - цена альбома, а ластик стоит у рублей.
Тогда, 3х+2у=66 (первое уравнение)
2х+у=43 (второе уравнение).
Составим и решим систему уравнение (методом сложения):
2x+2y=66
2x+y=43
(умножим второе уравнение на -2)
3x+2y=66
-4x-2y=86
=(3х+(-4х)) + (2у+(-2у))=66+(-86)
-х=-20
х=20 (руб.) - стоимость альбома.
2х+у=43
2*20+у=43
у=43-40
у=3 (руб.) - стоимость ластика.
ОТВЕТ: стоимость альбома 20 рублей, стоимость ластика 3 рубля.
Берешь это в табличку : y| 1 | 3 | x| 2 | 3 | Если y = 1, то x = 2; если y = 3, то x = 3. Делала так: Подбирала любое значение y и находила значение x, как в любом уравнении. На примере первого : 1=2x-3; x=2. Во втором так же. Далее на координатной плоскости отмечаем точки с координаты и, полученными ранее. Например точка K ( 2;1) и точка L (3;3). Обратите внимание, что в ответе координаты точки А мы пишем именно в таком порядке, т.к. На первом месте значение х, а на втором у. Когда вы отметили точки, вы вполне можете провести через них прямую, сделайте это. И лучше провести ее через всю плоскость, а не от точки до точки. Удачи!