Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
Объяснение:
Как я понял, устройства все одинаковые.
С вероятностью p1= 1/2 они дают 0, с p2=1/3 дают 1 В, и с p3=1/6 дают 3 В.
А) Сумма 2 выходов означает, что одно устройство выдаст U1, а другое U2.
Вероятность, что произойдет именно два таких выхода одновременно, равна произведению вероятностей каждого из выходов.
0+0=0: p1*p1=1/2*1/2=1/4
0+1=1: p1*p2=1/2*1/3=1/6
0+3=3: p1*p3=1/2*1/6=1/12
1+0=1: p2*p1=1/3*1/2=1/6
1+1=2: p2*p2=1/3*1/3=1/9
1+3=4: p2*p3=1/3*1/6=1/18
3+0=3: p3*p1=1/6*1/2=1/12
3+1=4: p3*p2=1/6*1/3=1/18
3+3=6: p3*p3=1/6*1/6=1/36
Для проверки сложим все эти вероятности, сумма должна быть 1.
1/4+1/6+1/12+1/6+1/9+1/18+1/12+1/18+1/36 =
= 9/36+6/36+3/36+6/36+4/36+2/36+3/36+2/36+1/36 =
= (9+6+3+6+4+2+3+2+1)/36 = 36/36 = 1
Все правильно.
Б) Результат в 1 В может получиться двумя :
1 = 0+1 = 1+0
Вероятности одинаковые, 1/6 и 1/6.
Поэтому суммарная вероятность равна
P(1) = 1/6+1/6 = 1/3
Из 360 испытаний получится примерно 360/3 = 120 испытаний с таким результатом.
ответ: 120
для меня это самое понятное... надеюсь
Объяснение:
Предположим, что нам нужно составить квадратное уравнение, корнями которого были бы числа x1 и x2. Очевидно, что в качестве искомого уравнения можно выбрать уравнение
a(х — x1)(х — x2) = 0, (1)
где а — любое отличное от нуля действительное число. С другой стороны, каждое квадратное уравнение с корнями x1 и x2 можно записать в виде (1).
Таким образом, формула (1) полностью решает поставленную выше задачу. Из всех квадратных уравнений корни x1 и x2 имеют уравнения вида (1) и только, они.
Пример. Составить квадратное уравнение, корни которого равны 1 и — 2.
ответ. Корни 1 и —2 имеют все квадратные уравнения вида
а(х — 1)(х + 2) = 0,
или
ах2 + ах — 2а = 0,
где а — любое отличное от нуля действительное число. Например, при а = 1 получается уравнение
х2 + х — 2 = 0.