А) соответственные углы при пересечении двух парал. прямых третьей равны, значит 2х=240°; х=240°/2; х=120°. у=180°-120°=60°. ответ: 120° и 60°.
Б) внутренние односторонние углы при параллельных в сумме дают 180°. Если меньший из них принять за х, то второй х+20°, а их сумма х+х+20°=180°; 2х+20°=180°; 2х=180°-20°; 2х=160° х=160°/2 х=80° 80°+20°=100° ответ: 80° и 100°.
В) Накрест лежащие углы при параллельных равны, поэтому можно их (каждый из них принять за х. Тогда 2х=250° х=250°/2 х=125° 180°-125°=55° ответ: 125° и 55°.
Так эта функция имеет смыл при всех значениях икс, то получаем:
Проверим на четность: - то функция четна. - то функция нечетна. Если ни один из этих определений не работают в нашей функции. То наша функция будет не чётна, не нечётна. Проверим:
Так как, степень четная, то получим:
Значит наша функция чётна, то есть, симметрична относительно оси игрек. Найдем теперь производную:
Теперь найдем критические точки, при которых производная обращается в нуль:
Отметим данные точки, на числовой прямой, и определим знак производной на интервалах:
То есть наглядно, это выглядит так:
- + - + ------------------------------------>
Таким образом, точка минимума, x=0 точка максимума, точка минимума.
Теперь строим график, на основе проделанного исследования (во вложении)
2х=240°;
х=240°/2;
х=120°.
у=180°-120°=60°.
ответ: 120° и 60°.
Б) внутренние односторонние углы при параллельных в сумме дают 180°. Если меньший из них принять за х, то второй х+20°, а их сумма
х+х+20°=180°;
2х+20°=180°;
2х=180°-20°;
2х=160°
х=160°/2
х=80°
80°+20°=100°
ответ: 80° и 100°.
В) Накрест лежащие углы при параллельных равны, поэтому можно их (каждый из них принять за х. Тогда
2х=250°
х=250°/2
х=125°
180°-125°=55°
ответ: 125° и 55°.
Так эта функция имеет смыл при всех значениях икс, то получаем:
Проверим на четность:
- то функция четна.
- то функция нечетна.
Если ни один из этих определений не работают в нашей функции. То наша функция будет не чётна, не нечётна.
Проверим:
Так как, степень четная, то получим:
Значит наша функция чётна, то есть, симметрична относительно оси игрек.
Найдем теперь производную:
Теперь найдем критические точки, при которых производная обращается в нуль:
Отметим данные точки, на числовой прямой, и определим знак производной на интервалах:
То есть наглядно, это выглядит так:
- + - +
------------------------------------>
Таким образом, точка минимума, x=0 точка максимума, точка минимума.
Теперь строим график, на основе проделанного исследования (во вложении)