Нам нужно найти знаменатель бесконечно убывающей прогрессии, у которой второй член в 8 раз больше сумма всех ее последующих членов. То есть нам нужно знать две суммы: всей геометрической прогрессии и её части - от третьего члена до бесконечности.
S1 = b1/1-q - сумма всей геометрической прогрессии
S2 = b3/1-q - сумма членов геометрической прогрессии, начиная с третьего.
b2 = 8*S2 - второй член в 8 раз больше суммы всех членов, начиная с третьего.
Немного поработаем с формулами:
b2 = 8*S2
b1*q = 8 * b1*q^2/1-q
b1*q(1-q) = 8*b1*q^2
q - q^2 = 8*q^2
q - 9q^2 = 0
q(1-9q) = 0
q = 0 и 1-9q = 0
q = 1/9
q не может быть равно нулю(это одно из условий в геометрической прогрессии). Поэтому ответ один - 1/9.
Расписываем (x-2)^2 по формуле сокращенного умножения (a-b)^2=a^2-2ab+b^2 получаем (x^2-4x+4)/(x-1)<0 решаем квадратное уравнение x^2-4x+4=0 D=0, значит -b/2a и один корень x=2 :> a(x-x1)(x-x1)(x-2)(x-2) это у нас такая формула есть (не знаю как она называется) значит общая у нас будет (x-2)(x-2)/(x-1)<0 у нас неравенство, значит x=2 x=1 пишем это на линию ___+1-2+> считаем интервалы + и - нам нужно меньше нуля , значит от 1 до 2 ответ : "(1;2)" (скобки не квадратные потому что у нас не меньше либо равно 0, а просто меньше нуля)
Имеем бесконечно убывающую геометрическую прогрессию, |q| < 1
b2 = b1*q
b1 = b2/q
Нам нужно найти знаменатель бесконечно убывающей прогрессии, у которой второй член в 8 раз больше сумма всех ее последующих членов. То есть нам нужно знать две суммы: всей геометрической прогрессии и её части - от третьего члена до бесконечности.
S1 = b1/1-q - сумма всей геометрической прогрессии
S2 = b3/1-q - сумма членов геометрической прогрессии, начиная с третьего.
b2 = 8*S2 - второй член в 8 раз больше суммы всех членов, начиная с третьего.
Немного поработаем с формулами:
b2 = 8*S2
b1*q = 8 * b1*q^2/1-q
b1*q(1-q) = 8*b1*q^2
q - q^2 = 8*q^2
q - 9q^2 = 0
q(1-9q) = 0
q = 0 и 1-9q = 0
q = 1/9
q не может быть равно нулю(это одно из условий в геометрической прогрессии). Поэтому ответ один - 1/9.
=)
(a-b)^2=a^2-2ab+b^2
получаем (x^2-4x+4)/(x-1)<0
решаем квадратное уравнение
x^2-4x+4=0
D=0, значит -b/2a и один корень
x=2
:> a(x-x1)(x-x1)(x-2)(x-2)
это у нас такая формула есть (не знаю как она называется)
значит общая у нас будет (x-2)(x-2)/(x-1)<0
у нас неравенство, значит x=2 x=1
пишем это на линию
___+1-2+>
считаем интервалы + и -
нам нужно меньше нуля , значит от 1 до 2
ответ : "(1;2)"
(скобки не квадратные потому что у нас не меньше либо равно 0, а просто меньше нуля)