Я уже решал эту задачу. Они выехали в момент 14-t, то есть за t ч до 14, и встретились в 14. Скорость велосипеда была v, скорость мотоцикла w км/ч. При движении навстречу скорости складываются. Расстояние AB=S. Значит, время в пути S = t*(v+w) Если бы скорость вела была 2v, то они встретились бы в 13 ч 30 мин, то есть на 0,5 ч раньше. S = (t-0,5)(2v+w) Если бы скорость мото была 2w, то они встретились бы в 13 ч 12 мин, то есть на 48 мин=0,8 ч раньше S = (t-0,8)(2w+v) Получаем систему { S = tv + tw { S = 2tv + tw - v - 0,5w { S = 2tw + tv - 1,6w - 0,8v Из 2 ур-ния вычитаем 1 ур-ние. Из 3 ур-ния тоже вычитаем 1 ур-ние. { 0 = tv - v - 0,5w { 0 = tw - 1,6w - 0,8v Решаем { w = 2v*(t-1) { 0,8v = w(t-1,6) = 2v(t-1)(t-1,6) Делим всё на 2v и умножаем на 5 2 = 5(t^2-2,6t+1,6) 5t^2 - 13t + 6 = 0 D = 13^2 - 4*5*6 = 169 - 120 = 49 t1 = (13-7)/10 = 6/10 = 0,6 ч = 36 мин. t2 = (13+7)/10 = 20/10 = 2 ч. Если t1, то они выехали в 14 ч - 36 мин = 13 ч 24 мин. Но это позже, чем 13 ч 12 мин, поэтому не подходит. ответ: они выехали в 14 - 2 = 12 часов.
Пете нужно n секунд, чтобы проехать 1 круг. Васе нужно n+3 секунд, а Толе нужно n+7 секунд на 1 круг. Дистанция составляла x кругов. Петя проехал их за nx секунд, Вася за это время проехал x-1 кругов. nx = (n+3)(x-1) А Толя за это же время проехал x-2 кругов. nx = (n+7)(x-2) Раскрываем скобки { nx = nx + 3x - n - 3 { nx = nx + 7x - 2n - 14 Приводим подобные { n = 3x - 3 { 2n = 7x - 14 Умножаем 1 уравнение на -2 и складываем уравнения -2n + 2n = -6x + 6 + 7x - 14 0 = x - 8 x = 8 кругов была дистанция n = 3*8 - 3 = 21 сек нужно Пете, чтобы проехать 1 круг.
Они выехали в момент 14-t, то есть за t ч до 14, и встретились в 14.
Скорость велосипеда была v, скорость мотоцикла w км/ч.
При движении навстречу скорости складываются.
Расстояние AB=S. Значит, время в пути
S = t*(v+w)
Если бы скорость вела была 2v, то они встретились бы в
13 ч 30 мин, то есть на 0,5 ч раньше.
S = (t-0,5)(2v+w)
Если бы скорость мото была 2w, то они встретились бы в
13 ч 12 мин, то есть на 48 мин=0,8 ч раньше
S = (t-0,8)(2w+v)
Получаем систему
{ S = tv + tw
{ S = 2tv + tw - v - 0,5w
{ S = 2tw + tv - 1,6w - 0,8v
Из 2 ур-ния вычитаем 1 ур-ние. Из 3 ур-ния тоже вычитаем 1 ур-ние.
{ 0 = tv - v - 0,5w
{ 0 = tw - 1,6w - 0,8v
Решаем
{ w = 2v*(t-1)
{ 0,8v = w(t-1,6) = 2v(t-1)(t-1,6)
Делим всё на 2v и умножаем на 5
2 = 5(t^2-2,6t+1,6)
5t^2 - 13t + 6 = 0
D = 13^2 - 4*5*6 = 169 - 120 = 49
t1 = (13-7)/10 = 6/10 = 0,6 ч = 36 мин.
t2 = (13+7)/10 = 20/10 = 2 ч.
Если t1, то они выехали в 14 ч - 36 мин = 13 ч 24 мин.
Но это позже, чем 13 ч 12 мин, поэтому не подходит.
ответ: они выехали в 14 - 2 = 12 часов.
Васе нужно n+3 секунд, а Толе нужно n+7 секунд на 1 круг.
Дистанция составляла x кругов.
Петя проехал их за nx секунд, Вася за это время проехал x-1 кругов.
nx = (n+3)(x-1)
А Толя за это же время проехал x-2 кругов.
nx = (n+7)(x-2)
Раскрываем скобки
{ nx = nx + 3x - n - 3
{ nx = nx + 7x - 2n - 14
Приводим подобные
{ n = 3x - 3
{ 2n = 7x - 14
Умножаем 1 уравнение на -2 и складываем уравнения
-2n + 2n = -6x + 6 + 7x - 14
0 = x - 8
x = 8 кругов была дистанция
n = 3*8 - 3 = 21 сек нужно Пете, чтобы проехать 1 круг.