В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lizun10
lizun10
16.09.2021 12:44 •  Алгебра

Найдите корни уравнения cos x-cos2x=1 на интервале (-3π/4; π)​

Показать ответ
Ответ:
Naymchim
Naymchim
12.03.2021 19:12

cosx-cos2x=1

cosx=1+cos2x

1=(cosx)^2+ (sinx)^2 будем писать 1 как a=1, cos2x= (cosx)^2 -(sinx)^2 будем писать cos2x=b

cosx= a+b= 2(cosx)^2 делим обе части на cosx:

2cosx=1 => cosx=1/2 x= +-arccos1/2

x= +-π/3

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота