3
Объяснение:
остання цифра добутку (степені числа) залежить лише від добутку останньої цифри кожного з множників
тому остання цифра числа 987 в степені 987 така ж сама як і остання цифра числа 7 в степені 987
далі 7 =..7 (1 раз множник)
7*7=...9 (2 рази множник)
7*7*7=..3 ( 3 рази множник)
7*7*7*7=..1 ( 4 рази множник)
7*7*7*7*7=..7 ( 5 раз множник), а значить остання цифра степеней 7 буде повторюватися з періодом 4
987=4*246+3
7 в степені 987=7*7*7**7*7 (987 раз)=
(7*7*7*7) (246 раз) *7*7*7=(...1)(246 раз)*...3=...1*..3=...3
значить остання цифра 3
Решить систему линейных уравнений методом подстановки и методом сложения:
{
y
+
2
x
=
1
−
Решение методом подстановки.
⇒
(
)
0
7
;
Решение методом сложения.
Вычитаем уравнения:
Подставиим найденную переменную в первое уравнение:
3
Объяснение:
остання цифра добутку (степені числа) залежить лише від добутку останньої цифри кожного з множників
тому остання цифра числа 987 в степені 987 така ж сама як і остання цифра числа 7 в степені 987
далі 7 =..7 (1 раз множник)
7*7=...9 (2 рази множник)
7*7*7=..3 ( 3 рази множник)
7*7*7*7=..1 ( 4 рази множник)
7*7*7*7*7=..7 ( 5 раз множник), а значить остання цифра степеней 7 буде повторюватися з періодом 4
987=4*246+3
7 в степені 987=7*7*7**7*7 (987 раз)=
(7*7*7*7) (246 раз) *7*7*7=(...1)(246 раз)*...3=...1*..3=...3
значить остання цифра 3
Решить систему линейных уравнений методом подстановки и методом сложения:
{
y
+
2
x
=
1
y
−
x
=
3
Решение методом подстановки.
{
y
+
2
x
=
1
y
−
x
=
3
⇒
{
y
=
−
2
x
+
1
y
−
x
=
3
⇒
{
y
=
−
2
x
+
1
(
−
2
x
+
1
)
−
x
=
3
⇒
{
y
=
−
2
x
+
1
−
3
x
−
2
=
0
⇒
{
y
=
−
2
x
+
1
x
=
−
2
3
⇒
{
y
=
7
3
x
=
−
2
3
y
=
2
1
3
;
x
=
−
2
3
Решение методом сложения.
{
y
+
2
x
=
1
y
−
x
=
3
Вычитаем уравнения:
−
{
y
+
2
x
=
1
y
−
x
=
3
(
y
+
2
x
)
−
(
y
−
x
)
=
1
−
3
3
x
=
−
2
x
=
−
2
3
Подставиим найденную переменную в первое уравнение:
(
−
2
3
)
+
2
x
=
1
y
=
7
3
y
=
2
1
3
;
x
=
−
2
3
Объяснение: