Строим график и видим: максимум: 3, минимум при -2 или при 2, подстановкой видим минимум при -2, он равен -29. Альтернативное решение заключается в нахождении экстремумов функции при производных и рассматривании двух участков. Производную приравниваем к 0 для нахождения экстремумов кубической параболы: 3х^2-12х=0 х1=0 у1=0. А(0;0) х2=-4 у2=-157. В(-4;-157) На участке от -2 до 0: производная больше 0, функция возрастает. На участке от 0 до 2: производная меньше 0, функция убывает. Максимум при х=0 и у=3 Минимум либо при х=-2, либо при х=2. Подстановкой убеждаемся: минимум при х=-2, он равен -29. Этот позволяет построить график, который указан выше, но построение графика при этом аналитическом не необходимо.
ответ: При діленні сумми цих двох чисел на 11 отримаєм завжди число рівне суммі двох цифер з яких складаються данні числа.
Объяснение: Позначемо двоцифрове число (ab). Де а і b - довільні натуральні числа. Зворотнє двоцифрове число буде мати вигляд: (ba).
Розпишем двоцифрове число (ab) : ab=10×a +b;
Розпишем зворотнє двоцифрове число (ba) : ba=10×b+a;
Тепер запишем сумму цих чисел: ab + ba=(10×a+b) + (10×b+a)=
=10a+b+10b+a=11a+11b=11×(a+b).
Отримана сумма (11×(а+b))/11=(a+b), при діленні на 11 завжди буде рівна суммі цих цифр (a+b) з яких складаються ці числа, при любих
довільних а і b.
Наприклад: 13+31=44;
44/11=4;
Тут а=1, b=3, (a+b)=1+3=4.
Альтернативное решение заключается в нахождении экстремумов функции при производных и рассматривании двух участков.
Производную приравниваем к 0 для нахождения экстремумов кубической параболы:
3х^2-12х=0
х1=0 у1=0. А(0;0)
х2=-4 у2=-157. В(-4;-157)
На участке от -2 до 0:
производная больше 0, функция возрастает.
На участке от 0 до 2:
производная меньше 0, функция убывает.
Максимум при х=0 и у=3
Минимум либо при х=-2, либо при х=2. Подстановкой убеждаемся: минимум при х=-2, он равен -29.
Этот позволяет построить график, который указан выше, но построение графика при этом аналитическом не необходимо.