В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
dlyaigrmoih1
dlyaigrmoih1
02.10.2022 06:38 •  Алгебра

Найдите максимальное значение выражения а2+в2, если известно, что а2+в2+ав=а+в

Показать ответ
Ответ:
BerlIS
BerlIS
31.08.2020 12:49
A²+b²+ab=a+b
Пусть
a+b=t
Возведем обе части в квадрат
a²+2ab+b²=t²
Выразим
a²+b²+ab=t²-ab
и
по условию
a²+b²+ab=t
Приравниваем правые части
t²-ab=t  ⇒ab=t²-t  значит

a²+b²=t-ab
a²+b²=t-t²+t
a²+b²=2t-t²
Квадратный трехчлен
2t-t² принимает наибольшее значение в точке t=1
t=1 - абсцисса вершины параболы.

При t=1  2t-t²=2*1-1²=2-1=1

О т в е т.максимальное значение выражения а²+b² при a²+b²+ab=a+b равно 1.
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота