Cos^2(x)+cos^2(2x)=cos^2(3x)+cos^2(4x) cos^2(x) - cos^2(3x) = cos^2(4x) - cos^2(2x) далее разность квадратов с обоих сторон (cos(x) - cos(3x))*(cos(x) + cos(3x)) = (cos(4x) - cos(2x))*(cos(4x) + cos(2x)) далее применяем формулы cosa-cosb=-2sin( (a+b)/2 )*sin( (a-b)/2 ) cosa+cosb=2cos( (a+b)/2 )*cos( (a-b)/2 ) получаем, -2sin( (x+3x)/2 )*sin( (x-3x)/2 ) * 2cos( (x+3x)/2 )*cos( (x-3x)/2 ) = = -2sin( (4x+2x)/2 )*sin( (4x-2x)/2 ) * 2cos( (4x+2x)/2 )*cos( (4x-2x)/2 ) слегка, 2-йки сокращаем, имеяя ввиду, что sin(-x)=-sin(x), а cos(-x)=cos(x) sin(2x)*sin(x)*cos(2x)*cos(x)=-sin(3x)*sin(x)*cos(3x)*cos(x) сокращая на sin(x) и cos(x) имеем ввиду, что это также является решением уравнения, т. е. уравнение распадается на три уравнения 1) sin(x)=0, тут x=пk, где k-целое число 2) cos(x)=0, тут x=п/2*k, где k-целое число 3) после сокращения на sinx и cosx sin(2x)cos(2x)=-sin(3x)cos(3x) здесь применяем формулу sin(2x)=2*sin(x)*cos(x), получаем 1/2*sin(4x)=-1/2*sin(6x) sin(4x)+sin(6x)=0 далее применяем формулу sina+sinb=2sin( (a+b)/2 )*cos( (a-b)/2 ), получаем 2sin( (4x+6x)/2 )*cos( (4x-6x)/2 ) = 0 на 2 сокращаем, получаем sin(5x)*cos(x) = 0 cos(x)=0 у нас уже имелось в пункте 2) остается sin(5x)=0 => 5x=пk => x=п/5*k, k - целое объединяем решения: 1)x=пk, где k-целое число 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое третье включает в себя первое, можно на тригонометрическом круге посмотреть, если так не понятно, поэтому остается 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое число дальше мудохаться не стоит, ответ: x=п/2*k, где k-целое число и x=п/5*k,где k - целое число p.s. п-это пи=3.1415 если что (число эйлера вроде как)
неравенство. Выпишите правильный ответ.
а) х 2 + 5х = 0 в) х 2 – 2х < 7
б) – 6х – 8 > х + 3 г) х + 9 = 4х – 16
2. Выясните, решением какого неравенства является число 2.
Выпишите правильный ответ.
а) х 2 – х < 0 в) х 2 + х – 3 > 0
б) – х 2 + 4х – 5 > 0 г) х 2 – 2х < 0
3. Решите неравенство методом интервалов и выпишите
верный ответ: (х – 5)(х + 3) > 0
а)
в)
– 5 3 – 3 5
б) г)
– 3 5 – 5 3
4. Установите соответствие между квадратными
неравенствами и их решениями. ответ запишите в таблицу.
А [–6; 2]
1 х 2 + 4х – 12 ≥ 0 Б (–∞; –2] U [6; +∞)
2 х 2 – 4х – 12 ≤ 0 В (–∞; –6] U [2; +∞)
3 х 2 + 4х – 12 ≤ 0 Г [–6; –2]
4 х 2 – 4х – 12 ≥ 0 Д [–2; 6]
Е (–∞; 2] U [–6; +∞)
5. Решите квадратные неравенства и запишите полученные
ответы.
а) – 2х 2 – 5х + 3 ≤ 0 б) 3х 2 – 4х + 7 >