В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
gussamovadel
gussamovadel
12.06.2022 04:05 •  Алгебра

Найдите минимумы и максимумы функции

Показать ответ
Ответ:
12ал12ён12на12
12ал12ён12на12
24.08.2020 22:36

Объяснение:

минимум и максимум функции находятся на отрезке, он должен быть указан в условии!

1) находим производную:

f'(x)= 4*3x^2-12*2x=12x^2-24x=12x*(x-2)

2) находим критические точки (f'(x)=0 или не существует):

12x*(x-2)=0

х1=0 или х2=2

3) выбираем критические точки, которые принадлежат отрезку или интервалу с условия!

4) вычисляем значение функции  в критические точки, которые принадлежат отрезку И на концах отрезка

5) сравниваем полученные значения и выбираем из них min i max

0,0(0 оценок)
Ответ:
Arinka2184
Arinka2184
24.08.2020 22:36

y=4x^3-12x^2+1\\\frac{dy}{dx} = 12x^2-24x\\\\\frac{dy}{dx} = 0\\\\12x^2-24x=0\\12x(x-2)=0\\x_1=0, x_2 = 2

Первый нуль производной – точка максимума, второй – точка минимума.

y(0)=4*0^3-12*0^2+1\\y(0)=1\\y(2)=4*2^3-12*2^2+1\\y(2)=32-48+1=-15

y_{min}=-15\\y_{max}=1


Найдите минимумы и максимумы функции
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота