Алгебраическое выражение - это выражение, составленное из букв и чисел, соединенных знаками алгебраических действий: сложения, вычитания, умножения, деления, возведения в степень, извлечения корня.Найти значение алгебраического выражения - это значит найти множество всех его решений.ПОЯСНЕНИЕ. Выражения с переменными - алгебраические.Если в числовом выражении появляются буквы - это выражение становится буквенным выражением. Или выражением с переменными. Или - алгебраическим выражением. Это, практически, одно и то же. Выражение 5а +с, к примеру - и буквенное, и алгебраическое, и выражение с переменными.Почему буквенное - понятно. Ну, раз буквы есть, то любую букву можно заменять на разные числа. Поэтому буквы и называются переменными. В выражении у+5, например, у - переменная величина. Или говорят просто "переменная", без слова "величина". В отличие от цифры пять, например, которая - величина постоянная. Или просто - постоянная.Термин алгебраическое выражение означает, что для работы с данным выражением нужно использовать законы и правила алгебры. Если арифметика работает с конкретными числами, то алгебра - со всеми числами разом. Простой пример для пояснения.В арифметике можно записать, что 3 + 5 = 5 + 3. Посчитать, и все дела.Слева 8, и справа 8. А для других чисел такое равенство выполняется? Тоже можно записать и посчитать. Но чисел - бесконечное количество.. . И что, каждый раз считать? !А вот если мы подобное равенство запишем через алгебраические выражения:а + b = b + aмы сразу решим все вопросы. Для всех чисел махом. Для всего бесконечного количества. Потому, что под буквами а и b подразумеваются все числа. И не только числа, но даже и другие математические выражения. Вот так работает алгебра.
расстояние 96 км; скорость течения --- 5 км/час; время против течения --- ?,час, но на 10>, чем по течению; собств. скорость лодки ? км/час Решение. Х км/час скорость лодки в неподвижной воде ( собственная скорость ); (Х - 5) км/час скорость против течения; 96/(Х-5) час время, затраченное против течения; (Х + 5) км/час скорость по течению; 96/(Х+5) час время, затраченное по течению; 96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию; приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения: 96(Х+5) - 96*(Х-5) = 10*(X^2 - 25); 96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250; 10Х^2 = 1210; X^2 = 121; Х = 11(км/час). Отрицательную скорость ( второй корень уравнения) а расчет не принимаем! ответ : Скорость лодки в неподвижной воде 11 км/час. Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10
скорость течения --- 5 км/час;
время против течения --- ?,час, но на 10>, чем по течению;
собств. скорость лодки ? км/час
Решение.
Х км/час скорость лодки в неподвижной воде ( собственная скорость );
(Х - 5) км/час скорость против течения;
96/(Х-5) час время, затраченное против течения;
(Х + 5) км/час скорость по течению;
96/(Х+5) час время, затраченное по течению;
96/(Х-5) - 96/(Х+5) = 10 (час) разница во времени по условию;
приведем дроби к общему знаменателю (Х+5)(Х-5) = (Х^2 - 25) и умножим на него все члены уравнения:
96(Х+5) - 96*(Х-5) = 10*(X^2 - 25);
96Х + 96*5 - 96Х + 96*5 = 10X^2 - 250;
10Х^2 = 1210; X^2 = 121;
Х = 11(км/час).
Отрицательную скорость ( второй корень уравнения) а расчет не принимаем!
ответ : Скорость лодки в неподвижной воде 11 км/час.
Проверка: 96:(11-6) - 96:(11+6) = 10; 10 = 10