P = m/n. Пространство исходов упорядоченные пары чисел от 1 до 6, например: (1;6); (2;3), (6;5) и т.п. Всего таких исходов n = 6*6, A) m = 5*5. P = (5*5)/(6*6) = 25/36 Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36. В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6. Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6. Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что P_в + P_г = 1.
1) ac2-ad+c3-cd-bc2+bd= = (ac2 – ad) + (c3 –
bc2) + (bd – cd) = a·(c2 – d) + c2·(c – b) + d·(b – c) = a·(c2 – d) +
c2·(c – b) – d·(c – b) = a·(c2 – d) + c2·(c – b) – d·(c – b) = a·(c2 –
d) + (c – b)·(c2 – d) = (c2 – d)·(a + c – b)
2) mx2+my2-nx2-ny2+n-m= x2 ( m - n ) + y2 ( m - n ) - ( m - n ) = ( m-n ) (x2 + y2 - 1 )
3) am2+cm2-an+an2-cn+cn2= m2 (a + c ) + n2 ( a + c ) - n ( a + c ) = ( a+ c) ( m2 + n2 - n)
4) xy2-ny2-mx+mn+m2x-m2n= y2 ( x - n ) + m2 ( x - n) - m ( x - n ) = ( x-n) ( y2 + m2 - m )
5) a2b+a+ab2+b+2ab+2=ab ( a + b + 2 ) + ( a+ b+ 2 ) = 2 ( a+ b + 2 )
6) x2-xy+x-xy2+y3-y2= x ( x – y + 1) – y 2 ( x – y + 1)=( x – y + 1)( x – y 2 ).
Пространство исходов упорядоченные пары чисел от 1 до 6, например:
(1;6); (2;3), (6;5) и т.п.
Всего таких исходов n = 6*6,
A) m = 5*5. P = (5*5)/(6*6) = 25/36
Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36.
В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6.
Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6.
Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что
P_в + P_г = 1.