Если зайцев 12, волков 11, лосей 27, то всего животных 50, и всё удовлетворяет условию. Докажем, что меньшего количества животных быть не могло.
23% + 22% + 54% = 99%, осталось распределить 1%. и какую-то часть обязательно прибавить к 23%. Пусть зайцев x, волков y, лосей z. Тогда 0.23 * (x + y + z) < x <= 0.24 * (x + y + z) 0.22 * (x + y + z) <= y < 0.23 * (x + y + z)
Отсюда 0 < x - y <= 0,02 * (x + y + z).
Если x + y + z < 50, то 0.02 * (x + y + z) < 1 0 < x - y < 1.
Но x - y — натуральное число, оно не может быть строго между нулём и единицей.
Пусть АВ=2 см, AC=4 см и BC=5 см. Пусть α, β, γ - углы соответственно при вершинах A, B, C треугольника. Для нахождения косинусов углов используем теорему косинусов:
1. BC²=AB²+AC²-2*AB*AC*cos(α), откуда следует уравнение 25=4+16-2*2*4*cos(α), или 25=20-16*cos(α). Отсюда 16*cos(α)=-5 и cos(α)=-5/16. Тогда α=arccos(-5/16)≈108°.
2. AC²=AB²+BC²-2*AB*BC*cos(β), откуда следует уравнение 16=4+25-2*2*5*cos(β), или 16=29-20*cos(β). Отсюда 20*cos(β)=13 и cos(β)=13/20. Тогда β=arccos(13/20)≈49°.
3. AB²=AC²+BC²-2*AC*BC*cos(γ), откуда следует уравнение 4=16+25-2*4*5*cos(γ), или 4=41-40*cos(γ). Отсюда 40*cos(γ)=37 и cos(γ)=37/40. Тогда γ=arccos(37/40)≈22°
Проверка: сумма углов треугольника должна быть равна 180°. В нашем случае α+β+γ≈108°+49°+22°=179°≈180°, так что углы найдены верно.
Таким образом, наименьшим углом является γ. Его косинус равен 37/40=0,925, а его градусная величина - ≈22°.
23% + 22% + 54% = 99%, осталось распределить 1%. и какую-то часть обязательно прибавить к 23%.
Пусть зайцев x, волков y, лосей z. Тогда
0.23 * (x + y + z) < x <= 0.24 * (x + y + z)
0.22 * (x + y + z) <= y < 0.23 * (x + y + z)
Отсюда 0 < x - y <= 0,02 * (x + y + z).
Если x + y + z < 50, то
0.02 * (x + y + z) < 1
0 < x - y < 1.
Но x - y — натуральное число, оно не может быть строго между нулём и единицей.
ответ. 50
ответ: cos(γ)=0,925, γ≈22°.
Объяснение:
Пусть АВ=2 см, AC=4 см и BC=5 см. Пусть α, β, γ - углы соответственно при вершинах A, B, C треугольника. Для нахождения косинусов углов используем теорему косинусов:
1. BC²=AB²+AC²-2*AB*AC*cos(α), откуда следует уравнение 25=4+16-2*2*4*cos(α), или 25=20-16*cos(α). Отсюда 16*cos(α)=-5 и cos(α)=-5/16. Тогда α=arccos(-5/16)≈108°.
2. AC²=AB²+BC²-2*AB*BC*cos(β), откуда следует уравнение 16=4+25-2*2*5*cos(β), или 16=29-20*cos(β). Отсюда 20*cos(β)=13 и cos(β)=13/20. Тогда β=arccos(13/20)≈49°.
3. AB²=AC²+BC²-2*AC*BC*cos(γ), откуда следует уравнение 4=16+25-2*4*5*cos(γ), или 4=41-40*cos(γ). Отсюда 40*cos(γ)=37 и cos(γ)=37/40. Тогда γ=arccos(37/40)≈22°
Проверка: сумма углов треугольника должна быть равна 180°. В нашем случае α+β+γ≈108°+49°+22°=179°≈180°, так что углы найдены верно.
Таким образом, наименьшим углом является γ. Его косинус равен 37/40=0,925, а его градусная величина - ≈22°.