Рассм. ΔВСН . Он прямоугольный и ∠В=50° , тогда ∠ВСН=90°-50°=40°. Это угол, образованный высотой СН с меньшим катетом (катет ВС лежит против меньшего острого угла ΔАВС).
Рассм. ΔАСН . Он прямоугольный и ∠А=40° , тогда ∠АСН=90°-40°=50°. Это угол, образованный высотой СН с бОльшим катетом АС (катет АС лежит против бОльшего острого угла ΔАВС).
Замечание. Так как у треугольников ΔАВС , ΔВСН и ΔАСН все три угла равны, то эти треугольники подобны .
ΔАВС , ∠С=90° , ∠В=50° ⇒ ∠А=90°-∠В=90°-50°=40°
СН ⊥ АВ ⇒ ∠СНА=90° и ∠СРВ=90° .
Рассм. ΔВСН . Он прямоугольный и ∠В=50° , тогда ∠ВСН=90°-50°=40°. Это угол, образованный высотой СН с меньшим катетом (катет ВС лежит против меньшего острого угла ΔАВС).
Рассм. ΔАСН . Он прямоугольный и ∠А=40° , тогда ∠АСН=90°-40°=50°. Это угол, образованный высотой СН с бОльшим катетом АС (катет АС лежит против бОльшего острого угла ΔАВС).
Замечание. Так как у треугольников ΔАВС , ΔВСН и ΔАСН все три угла равны, то эти треугольники подобны .
В решении.
Объяснение:
Выполните задания в тетради:
Постройте таблицу для построения графиков.
В одной системе координат постройте графики функций:
а) y= x²
б) y= x² - 3
в) y= 1 + x²
График квадратичной функции, парабола.
а) стандартный вариант;
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 16 9 4 1 0 1 4 9 16
б) вершина параболы смещена по оси Оу "вниз" на 3 единицы;
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 13 6 1 -2 -3 -2 1 6 13
в) вершина параболы смещена по оси Оу "вверх" на 1 единицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 17 10 5 2 1 2 5 10 17
Рисунок прилагается.