В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
5Юра1111111
5Юра1111111
11.02.2020 09:14 •  Алгебра

Найдите множество значений функции y = x^2 - 6x + прям по пунктам, буду

Показать ответ
Ответ:
Дурачок225
Дурачок225
08.07.2020 10:55
Решение:
Парабола - неограниченно возрастающая функция (либо убывающая, если коэффициент перед квадратом является отрицательным числом).
Если точка M такова, что M(a,b) - вершина параболы, то значением множества функций является множество [b, +(-)беск.]
Найти вершину параболы можно найти двумя
1. По формуле: x = -\frac{b}{2a}, а потом найти значение y.
2. При производной
Я буду пользоваться
Как я поступлю:
1. Найду производную функции: (x^2-6x+7)'=(x^2)'-(6x)'+(7)'=2x-6
2. Приравниваем полученное выражение к нулю:
2x-6 = 0 \\
x-3 = 0 \\
x = 3
3. Полученное значение (т.е. 3) подставляем в квадратичную функцию. Так мы найдем наименьшее значение функции, или координату y вершины параболы:
3^2-6*3+7 = 9 - 18 + 7 = -2
Значит, наименьшее значение функции является -2. Наибольшее значение функции является +беск. (т.к. эта функция возрастает). Таким образом, полученный промежуток:
E(f) ∈ [-2, +беск.]
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота