Найдём касательную к параболе в точке (0,5;0,75). Уравнение касательной имеет вид: y=f'(x₀)(x-x₀)+f(x₀) x₀=0,5 f(x₀)=0,75 f'(x)=(2x-x²)'=2-2x f'(x₀)=2-2*0,5=2-1=1 Подставляем все найденные значения в уравнение касательной: y=1*(x-0,5)+0,75=x-0,5+0,75=x+0,25 Площадь фигуры, ограниченной графиками функций находится по формуле: S=∫(f(x)-g(x))dx Верхний предел интегрирования будет равен 0,5 или 1/2 (точка касания прямой и параболы), а нижний предел интегрирования равен x+0,25=0 x=-0,25=-1/4 (точка пересечения касательной с прямой y=0 или осью абсцисс) Предлагаю начертить графики на координатной плоскости. Где сразу видны пределы интегрирования и график функции y=x+0,25 расположен выше графика функции y=2x-x². Записываем интеграл и решаем его:
→ → → → →
АВ + СВ = АВ + ВМ = АМ
→ →
Задание : АМ*АС=?
Знаем, что скалярное произведение векторов - это произведение их длин на косинус угла между ними.
→ → → → → →
АМ * АС = |АМ|*|AC|*CosABM= |AM|*|AC|*Cos150°= ?
|AM| ищем из ΔАМС по т. Пифагора |AM| = √(12 -1)=√13
|AC| = 1 ( против угла 30°)
Сos150° = -Cos30°= -√3/2
→ → → → → →
АМ * АС = |АМ|*|AC|*CosABM= |AM|*|AC|*Cos150°=√13*1*(-√3/2) = -√39/2
y=f'(x₀)(x-x₀)+f(x₀)
x₀=0,5
f(x₀)=0,75
f'(x)=(2x-x²)'=2-2x
f'(x₀)=2-2*0,5=2-1=1
Подставляем все найденные значения в уравнение касательной:
y=1*(x-0,5)+0,75=x-0,5+0,75=x+0,25
Площадь фигуры, ограниченной графиками функций находится по формуле:
S=∫(f(x)-g(x))dx
Верхний предел интегрирования будет равен 0,5 или 1/2 (точка касания прямой и параболы), а нижний предел интегрирования равен
x+0,25=0
x=-0,25=-1/4 (точка пересечения касательной с прямой y=0 или осью абсцисс)
Предлагаю начертить графики на координатной плоскости. Где сразу видны пределы интегрирования и график функции y=x+0,25 расположен выше графика функции y=2x-x². Записываем интеграл и решаем его:
ед²