В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
lbogdan2
lbogdan2
27.03.2023 04:54 •  Алгебра

Найдите наибольшее и наименьшее значения функции y=x^2 на отрезке (-2; 1)

Показать ответ
Ответ:
максаткайрат
максаткайрат
24.05.2020 14:08

y=x² при х∈[-2;1]

найдём производную

y' = 2x

приравняем её нулю:

2x = 0

х = 0

При х<0  y'<0, ⇒ у убывает

При х>0  y'>0  ⇒ у возрастает

и при х=0 имеем локальный минимум функции

уmin = 0

На интервале[(-2;1] от -2 до 0 функция у убывает, а от 0 до 1 возрастает.

Следовательно наименьшее её значение имеет место в точке локального минимума, т.е

у наим = уmin = 0.

Наибольшее значение функции при х = -2, потому что функция y=x² чётная и. следовательно, график её симметричен относительно оси у. И чем дальше от оси у находится точка, тем большее в ней значение имеет эта функция.

у наиб = у(-2) = (-2)² = 4

ответ: у наим = 0, у наиб = 4

 

 

0,0(0 оценок)
Ответ:
Pro100god322
Pro100god322
24.05.2020 14:08

у=х^2 - квадратичная функция (стандартная парабола), направленная ветвями вверх, симмтричная относительно оси Oy.

 тогда: при  x=0    y=0

                   x=1    y=1

                   x=-2   y=4 

 следовательно: на отрезке (-2;1) У(наибольший) = 4, а У(наименьший)=0

ОТВЕТ: 4; 0 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота