Конечно же обе формулы дают ОДНИ И ТЕ ЖЕ решения. Просто запись в частном случае более лёгкая для восприятия.
Из этой формулы следует, что sinx=1 при х=П/2 , причём, если эту точку повернуть на один круг (+/-2П), два круга (+/-4П), три круга (+/-6П) и так далее, то придём в одну ту же точку В на тригонометрическом круге с декартовыми координатами (0,1) . Смотри рисунок. Поворачивать точку можно против часовой стрелки ( ) или по часовой стрелкe ( ) .
В случае общей формулы надо рассматривать чётные и нечётные значения .
Если k- чётно, то получаем
То есть получили ту же формулу, что и в частном случае.
Если k - нечётно, то получаем
На вид эта формула не похожа на частный случай, но точка х= -3П/2 получается из точки с дек. координатами А(1,0) путём её поворота на 270° (3П/2) по часовой стрелке (отрицательное направление поворота, поэтому знак (-) пишем ). И попадёт она в точку В(0,1). Но ведь мы попадём в точку В(0,1) и при повороте точки А(1,0) против часовой стрелки ( положительное направление поворота) на 90° (П/2) .
Поэтому запись равноценна записи .
Конечно, предпочтительнее сразу писать частный вид формулы для решения уравнения sinx=1, потому что он более простой в записи , но описывает те же решения, что и частный случай.
Т.к. правая часть ур-ния равна нулю, то решение у ур-ния будет, если хотя бы один из множителей в левой части ур-ния равен нулю.
Получим ур-ния
x=0
x−3=0
4x+7=0
решаем получившиеся ур-ния:
1. x=0
Получим ответ: x1 = 0
2. x−3=0
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
x=3
Получим ответ: x2 = 3
3. 4x+7=0
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
4x=−7
Получим ответ: x3 = -7/4
тогда окончательный ответ:
х1=0
х2=3
х3=-7/4
3m-8-5m-7
-2м-15
если второе ур-е тоже равно 0, то решаем дальше
-2м-15=0
-2м=15
м=-7,5
проверь написание ур-я))
Объяснение:
Конечно же обе формулы дают ОДНИ И ТЕ ЖЕ решения. Просто запись в частном случае более лёгкая для восприятия.
Из этой формулы следует, что sinx=1 при х=П/2 , причём, если эту точку повернуть на один круг (+/-2П), два круга (+/-4П), три круга (+/-6П) и так далее, то придём в одну ту же точку В на тригонометрическом круге с декартовыми координатами (0,1) . Смотри рисунок. Поворачивать точку можно против часовой стрелки ( ) или по часовой стрелкe ( ) .
В случае общей формулы надо рассматривать чётные и нечётные значения .
Если k- чётно, то получаем
То есть получили ту же формулу, что и в частном случае.
Если k - нечётно, то получаем
На вид эта формула не похожа на частный случай, но точка х= -3П/2 получается из точки с дек. координатами А(1,0) путём её поворота на 270° (3П/2) по часовой стрелке (отрицательное направление поворота, поэтому знак (-) пишем ). И попадёт она в точку В(0,1). Но ведь мы попадём в точку В(0,1) и при повороте точки А(1,0) против часовой стрелки ( положительное направление поворота) на 90° (П/2) .
Поэтому запись равноценна записи .
Конечно, предпочтительнее сразу писать частный вид формулы для решения уравнения sinx=1, потому что он более простой в записи , но описывает те же решения, что и частный случай.