В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Malikru74
Malikru74
18.04.2022 17:44 •  Алгебра

Найдите наибольшее значение функции у=(х^2-14x+14)e^14-x

Показать ответ
Ответ:
Dashuleta200
Dashuleta200
03.08.2020 12:53

Вычислим производную функции:

\tt y'=(x^2-14x+14)'\cdot e^{14-x}+(x^2-14x+14)\cdot (e^{14-x})'=\\ \\ \\ =(2x-14)e^{14-x}-(x^2-14x+14)e^{14-x}=\\ \\ \\ =e^{14-x}\cdot(2x-14-x^2+14x-14)=e^{14-x}(16x-x^2-28)

Приравняем производную функции к нулю:

\tt e^{14-x}(16x-x^2-28)=0\\ -x^2+16x-28=0|\cdot(-1)\\ x^2-16x+28=0

По т. Виета

\tt x_1=2\\ x_2=14

___-__(2)___+__(14)__-___

х = 2 - точка минимума, а х = 14 - точка максимума.

Найдем значения функции в точке х = 14 :

\tt f(14)=(14^2-14\cdot14+14)\cdot e^{14-14}=14


ответ: 14.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота