В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Erikalallala
Erikalallala
12.05.2023 13:31 •  Алгебра

Найдите наибольшее значение функции y=(x-27) * e в степени 28-x на отрезке [23; 40]

Показать ответ
Ответ:
valeraitrva
valeraitrva
24.07.2020 23:42
y'(x)=e^{28-x}-(x-27)*e^{28-x} =e^{28-x}(1-x+28)=e^{28-x}(29-x)
e^{28-x}(29-x)=0 ⇒ x=29
y(23)=(23-27)e^{28-23}=-4e^{5}
y(29)=(29-27)e^{28-29}=2e^{-1}= \frac{2}{e} - наибольшее значение
y(40)=(40-27)e^{28-40}=13e^{-12}= \frac{13}{e^{12} }
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота