Сумма квадратов членов прогрессии может быть записана в виде S1=b1²*(1+q²+q⁴+q⁶+). В скобках стоит бесконечная геометрическая прогрессия со знаменателем q². В условии дана бесконечно убывающая геометрическая прогрессия, а это значит, что её знаменатель q удовлетворяет условию 0<q<1. Но тогда и 0<q²<1, то есть прогрессия в скобках имеет сумму, равную 1/(1-q²). Тогда S1=b1²/(1-q²). А сумма заданной в условии прогрессии S2=b1/(1-q). По условию, S1/S2=b1/(1+q)=16/3. С другой стороны, по условию b2=b1*q=4. Мы получили систему из двух уравнений для определения b1 и q:
b1/(1+q)=16/3; b1*q=4
Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8, b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.
Решаем сначала уравнение вида (х^2-9)*(х-6)=0 (x-3)(x+3)(x-6)=0 корни уравнения: x=3, x=-3, x=6 рисуем прямую х и отмечаем эти точки на ней - + - + _____.______.________.___ -3 3 6 и считаешь знаки в каждом промежутке. Для этого подставляем любую точку с этого промежутка в исходное неравенство если x∈(-∞;-3) знак "-" (-4²-9)(-4-6)<0 если x∈(-3;3) знак "+" (2²-9)(2-6)>0 если x∈(3;6) знак "-" (4²-9)(4-6)<0 если x∈(6;+∞) знак "+" (7²-9)(7-6)>0
нам нужны значения, когда неравенство меньше 0, следовательно x∈(-∞;-3) ∪(3;6)
b1/(1+q)=16/3;
b1*q=4
Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.
(x-3)(x+3)(x-6)=0
корни уравнения: x=3, x=-3, x=6
рисуем прямую х и отмечаем эти точки на ней
- + - +
_____.______.________.___
-3 3 6
и считаешь знаки в каждом промежутке. Для этого подставляем любую точку с этого промежутка в исходное неравенство
если x∈(-∞;-3) знак "-" (-4²-9)(-4-6)<0
если x∈(-3;3) знак "+" (2²-9)(2-6)>0
если x∈(3;6) знак "-" (4²-9)(4-6)<0
если x∈(6;+∞) знак "+" (7²-9)(7-6)>0
нам нужны значения, когда неравенство меньше 0, следовательно x∈(-∞;-3) ∪(3;6)
Решение следующей задачи в приложении