В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
lfhnvjk2007
lfhnvjk2007
16.10.2022 15:23 •  Алгебра

Найдите наименьшее и наибольшее значение функции 1/2 x + 3 x на отрезке (0.5 : 3)​

Показать ответ
Ответ:
Kmaj
Kmaj
04.12.2020 12:43
Каждый член этой последовательности, начиная со второго, получается умножением предыдущего члена на 2. Эта последовательность является примером геометрической прогрессии.Определение. Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число.Иначе говоря, (bn) - геометрическая последовательность и bn≠0, тоbn+1=bn∙q,где q - некоторое число.В нашей последовательности степеней числа 2q =2 и bn+1=bn∙2.Из определения геометрической прогрессии следует, что отношение любого её члена, начиная со второго, к предыдущему члену равно q.bn+1/bn = qЧисло q называют знаменателем геометрической прогрессии.ПРИМЕРЫ.1. Если b1= 1 и q = 0,1, то получим Г.П.1; 0,1; 0,01; 0,001; ...2. Если b1=-5 и q = 2, то Г.П. получится следующая-5; -10; -20; -40; ...Зная первый член и знаменатель Г.П., можно найти любой член последовательности:b2=b1∙qb3=b2∙q=b1∙q2b4=b3∙q=b1∙q3b5=b4∙q=b1∙q4 ...bn=b1∙qn-1    (*)Мы получили формулу n-го члена геометрической прогрессии.Приведем примеры решения задач с использованием этой формулы.Задача 1. В Г.П. b1=12,8 и q=1/4. Найдем b7.Решение: b7=b1∙q6=12,8∙(1/4)6=(этапы решения)=1/320.Задача 2. Найдем восьмой член Г.П. (bn), если b1=162 и b3=18.Решение: испол
0,0(0 оценок)
Ответ:
мидина5
мидина5
07.06.2021 22:37
1) sin²x-16sinx-17=0
назначим  sinx=t
t²-16t-17=0
D=16²+4*17=256+68=324=18²
t(1)=(16+18)/2=17    ⇒sinx=17  ⇒ x=arcsin17+2πK
t(2)=(16-18)/2=-1      ⇒sinx=-1   ⇒  x=-π/2+2πk            k∈Z

2) sin²x+31cosx+101=0
1-cos²x+31cosx+101=0
cos²x-31cosx-102=0
назначим   cosx=t
t²-31t-102=0
D=31²+4*102=961+408=1369=37²
t(1)=(31+37)/2=68/2=34   ⇒ cosx=34   ⇒  x=arccos34
t(2)=(31-37)/2=-6/2=-3   ⇒  cosx=-34   ⇒  x=arccos(-34)=arccos34

3) sinx+23cosx=0 
уравнения делим на sinx 
получается
sinx/sinx+23cosx/sinx=0
1+23ctgx=0
23ctgx=-1
ctgx=-1/23
x=arcctg(-1/23)=-arcctg1/23
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота