В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

Найдите наименьшее и наибольшее значения заданной функции на заданном промежутке: у=х^4+8x^3+24x^2+32x+21, [-3; 0]

Показать ответ
Ответ:
kurolesov71
kurolesov71
24.05.2020 08:28

1)найдём производную

y'=4x^3+24x^2+48x+32

2)приравняем к нулю

4x^3+24x^2+48x+32=0

разделим всё на 4

x^3+6x^2+12x+8=0

вынесим х за скобки

x(x^2+6x+12+8)=0

x(x^2+6x+20)=0

x=0    x^2+6x+20=0

         D=36-4*1*20= -44 (пустое значение)

3)данные промежутки подставляем в саму функцию,не в производную

f(0)=0^4 + 0^3 + 0^2 + 0 + 21 = 21

f(-3)=(-3)^4 + 8 * (-3)^3 + 24 * (-3)^2 + 32 * (-3) + 21 = 81 + (-216) + 216+ (-96) + 21 = 81-216 + 216 -96 + 21 = 6

 

6 - наименьшее значение функции

21 - наибольшее значение функции

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота