В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vaynasmirnov021
vaynasmirnov021
15.08.2020 13:35 •  Алгебра

Найдите наименьшее значение функции y=10cosx+10x+8 на отрезке [0; п]

Показать ответ
Ответ:
zulu51
zulu51
06.10.2020 14:26
Вычислим производную функции.
y'=(10\cos x+10x+8)'=(10\cos x)'+(10x)'+(8)'=\\ \\ =-10\sin x+10.

Приравниваем производную функции к нулю
-10\sin x+10=0\\ \sin x=1\\x= \frac{\pi}{2}+2 \pi k,k \in Z

Отберем корни на отрезке [0;π].
Если k=0, то x=\frac{\pi}{2}

Вычислим значения функций на концах отрезка
y(0)=10\cos 0+10\cdot 0+8=10+8=18 - наименьшее
y(\frac{\pi}{2})=10\cos\frac{\pi}{2}+10\cdot\frac{\pi}{2}+8=5 \pi +8\approx23.708\\ y( \pi )=10\cos \pi +10 \pi +8=-10+10 \pi +8=10 \pi -2\approx29.416
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота