В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
mafa4334
mafa4334
13.04.2021 11:04 •  Алгебра

Найдите наименьшее значение функции y=(x-9)^{2}(x+4)-4 на отрезке [7; 16] заранее

Показать ответ
Ответ:
Ярослав4497
Ярослав4497
12.06.2020 19:35

–4

Объяснение:

Стандартный алгоритм нахождения наименьшего значения функции y=f(x) на отрезке [a; b] следующее:

1) находим критические точки функции, которые входят в заданный отрезок [a; b], то есть найдем производную функции f(x) и находим нули производной на отрезке [a; b] (решаем уравнение f '(x)=0);

2) вычислим значения функции f(x) для критических точек из отрезка [a; b] и для граничных значений a и b;

3) ответом будут наименьшее значение среди полученных значений функции.

Дана функция y = (x–9)²·(x+4)–4 и отрезок [7; 16].

1) находим критические точки функции:

y'=((x–9)²·(x+4)–4)'=((x–9)²)'·(x+4)+(x–9)²·(x+4)'–(4)'=

=2·(x–9)²⁻¹·(x+4)+(x–9)²·1–0=2·(x–9)·(x+4)+(x–9)²=

=(x–9)·(2·x+8+x–9)=(x–9)·(3·x–1)

y'=0 ⇔ (x–9)·(3·x–1)=0 ⇔ x=9 ∈ [7; 16], x=1/3 ∉ [7; 16].

2) вычислим значения функции f(x) для критической точки x=9,  граничных точек x=7 и x=16:

y(7)= (7–9)²·(7+4)–4 = 4·11–4 = 44–4 = 40

y(9)= (9–9)²·(9+4)–4 = 0·13–4 = –4

y(16)= (16–9)²·(16+4)–4 = 49·20–4 = 980–4 = 976

Среди найденных значений выбираем наименьшее, то есть:

y(9) = –4.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота