В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
vika8086
vika8086
04.02.2022 00:06 •  Алгебра

Найдите наименьшее значение выражения ((4x-3y+16)^4+(10-x-y)^6)^2 и значения х и у, при которых оно достигается.

Показать ответ
Ответ:
Ruslan3252
Ruslan3252
20.06.2020 17:44
Так как оно в квадрате то ее наименьшее значение может быть только 0
((4x-3y+16)^4+(10-x-y)^6)^2 =0\\
(4x-3y+16)^4+(10-x-y)^6=0\\

степени четные то они равны 0

4x-3y+16=0\\
10-x-y=0\\
\\
y=10-x\\
4x-30+3x+16=0\\
7x-14=0\\
x=2\\
y=8\\

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота