Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Вероятность равна отношению числа благоприятных исходов ко всем возможным исходам
▒Выбрать из 36-ти карт 4 можно 58905-ю (сочетания без повторений из 36 по 4)
▒Выбрать из 36-ти карт 4, так чтобы из 4-ёх карт был один туз можно 19840-ю ((сочетания без повторений из (36 - 4 = 32) по (4 - 1 = 3))*4)
▒Вероятность равна 19840 / 58905 = 3968 / 11781 = 0,3368 = 33,68%
в)
▒Выбрать из 36-ти карт 4, так чтобы из 4-ёх карт был туз пик можно 6545-ю (сочетания без повторений из (36 - 1 = 35) по 3)
▒Вероятность равна 6545/ 58905 = 1 / 9 = 0,11 = 11%