Площадь прямоугольного треугольника равна произведение катетов деленное на 2
Обозначим катеты за A и B, гипотинузу за C. И так как сумма углов треугольника равна 180 градусов, то получается третий, неизвестный угол равен 180-90-15=75 градусов
По теореме косинусов: a^2=b^2+c^2-2bcCos(15)
по теореме Пифагора: a^2+b^2=c^2
Получается система уравнений: a^2=b^2+16-2*4*b*0,9659 a^2+b^2=16
Обозначим катеты за A и B, гипотинузу за C.
И так как сумма углов треугольника равна 180 градусов, то получается третий, неизвестный угол равен 180-90-15=75 градусов
По теореме косинусов:
a^2=b^2+c^2-2bcCos(15)
по теореме Пифагора:
a^2+b^2=c^2
Получается система уравнений:
a^2=b^2+16-2*4*b*0,9659
a^2+b^2=16
a^2=16-b^2
a=корень(16-b^2)
16-b^2=b^2+16-7,7274b
2b^2-7,7274b=0
2b=7,7274
b=3,8637
a=корень(16-b^2)=корень(1,0718)=1,0353
S=ab/2=3,8637*1,0353/2=2
Задание 2:
{2x+7y=38|*3 {6x+21y=114
{6x-4y=-11 {6x-4y=-11
Вычтем из первого уравнения второе:
21y-(-4y)=114-(-11)
25y=125
y=5
Подставим полученное значение во второе уравнение:
6x-4*5=-11
6x-20=-11
6x=9
x=1,5
ответ:(1,5;5)
Задание 3:
y=kx+b
Составим систему уравнений, подставив в формулу прямой соответствующие значения абцисс и ординат точек:
{k+b=-2,5
{-2k+b=12,5
Вычтем из первого уравнения второе:
k-(-2k)=-2,5-12,5
3k=-15
k=-5
Подставим полученное значение в первое уравнение:
-5+b=-2,5
b=2,5
Итоговая формула:
y=-5x+2,5