План действий такой: 1) ищем производную 2) приравниваем её к нулю и решаем уравнение 3) полученные корни ставим на числовой прямой и определяем знак производной на каждом участке 4) делаем выводы: а) где плюс, там возрастание, где минус - убывание, точка, при переходе через которую производная меняет знак с + на -, это точка максимума, наоборот - точка минимума. начали? 1) производная равна(-2х(х +2) - ( 3 - х²)·1)/(х + 2)² 2) ( -2х² - 4х - 3 + х² )/(х + 2)² = 0 | ·(х + 2 ) ≈ 0 -2х² - 4х -3 +х² = 0 -х² -4х -3 = 0 х² + 4х + 3 = 0 х1 = -1; х2 = -3 3) -∞ + -3 - -1 + +∞ 4) функция возрастает при х∈( -∞; -3)∨(-1; +∞) функция убывает при х ∈(-3; -1) х = -3 точка мак4симума х = -1 точка минимума.
№1
Умножим первое ур-ние на 3, получим такую систему ур-ний
9х+3ау=36
9х-15у=36
вычтем второе из первого, получим
3ау+15у=0
или
3(а+5)у=0 делим на 3
(а+5)у=0
только два варианта решений:
1) а+5=0 а=-5 0*у=0 => у-любое - бесконечно множество решений
и х- тоже любое - тоже бесконечно множество решений
или
2) а+5≠0 у=0/(а+5) => у=0 - единственное решение
и х=4 - тоже единственное решение
значит, система всегда имеет решения (или одно или бесконечно много )
ответ: Г ) таких значений а не существует, при которых система не имеет решений - решения есть при любых а - или одно или бесконечно много
№2
2х-7у=6
8х-28у=24
разделим второе на 4, получим
2х-7у=6
2х-7у=6
получили фактически только одно единственное уравнение с двумя неизвестными
2х-7у=6
значения, например, у можно взять любое, тогда х вычисляется из уравнения
2х=6+7у
х=3+(7/2)у
ответ: Г ) у системы бесконечно много решений