Найдите объем тела, полученного при вращении вокруг оси абсцисс криволинейной трапеции, ограниченной линиями y=2√x, x=4, y=0. Сделайте рисунок к задаче.
Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов: Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.
Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов:
Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.
5t^2 - 12t + 4 = 0
D=144 - 4*4*5 = 64
t1 = (12 - 8)/10 = 4/10 = 2/5
t2 = (12+8)/10 = 20/10 = 2 > 1 - посторонний корень
cosx = 2/5
x = +- arccos(2/5) + 2πk
x∈[-5π/2;-π]
1) -5π/2 ≤ arccos(2/5) + 2πk ≤ -π - во всех частях неравенства отнимем аркосинус, и получившееся выражение разделим на 2пи:
-5/4 - (arccos(2/5))/(2π) ≤ k ≤ -0.5 - (arccos(2/5))/(2π), => k= -1
2) -5π/2 ≤ -arccos(2/5) + 2πk ≤ -π - во всех частях неравенства прибави аркосинус, и получившееся выражение разделим на 2пи:
-5/4 + (arccos(2/5))/(2π) ≤ k ≤ -0.5 + (arccos(2/5))/(2π), => k= -1
Значит, нужный корень существует при k=-1
x = +-arccos(2/5) - 2π