Функцию (х+3)(х+1) проще исследовать после преобразования: (х+3)(х+1) = х²+3х+х+3 = х²+4х+3 - это уравнение параболы. Результаты исследования графика функции
Область определения функции. ОДЗ: -00<x<+00
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+4*x+3.
Результат: y=3. Точка: (0, 3) Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2+4*x+3 = 0 Решаем это уравнение и его корни будут точками пересечения с X: x=-3.0. Точка: (-3.0, 0) x=-1.0. Точка: (-1.0, 0) Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=2*x + 4=0 (Производную находим , a уравнение решаем ) Решаем это уравнение и его корни будут экстремумами:x=-2.0. Точка: (-2.0, -1.0) Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:-2.0 Максимумов у функции нету Возрастает на промежутках: [-2.0, oo) Убывает на промежутках: (-oo, -2.0] Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции, + нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=2=0 - нет перегибов. Вертикальные асимптоты Нету Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^2+4*x+3, x->+oo = oo, значит горизонтальной асимптоты справа не существует lim x^2+4*x+3, x->-oo = oo, значит горизонтальной асимптоты слева не существует Наклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^2+4*x+3/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^2+4*x+3/x, x->-oo = -oo, значит наклонной асимптоты слева не существует Четность и нечетность функции:Проверим функцию четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^2+4*x+3 = x^2 - 4*x + 3 - Нет x^2+4*x+3 = -(x^2 - 4*x + 3) - Нет - значит, функция не является ни четной ни нечетной
Второе задание не совсем понятно. В таблице должен быть столбец, где дано одновременно и х и у. У Вас не понятно где этот столбец. Я решила, что у Вас смещено на один столбец. Может это и не так. Посмотрите.
(х+3)(х+1) = х²+3х+х+3 = х²+4х+3 - это уравнение параболы.
Результаты исследования графика функции
Область определения функции. ОДЗ: -00<x<+00
Точка пересечения графика функции с осью координат Y:График пересекает ось Y, когда x равняется 0: подставляем x=0 в x^2+4*x+3.
Результат: y=3. Точка: (0, 3)Точки пересечения графика функции с осью координат X:График функции пересекает ось X при y=0, значит нам надо решить уравнение:x^2+4*x+3 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=-3.0. Точка: (-3.0, 0) x=-1.0. Точка: (-1.0, 0)
Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=2*x + 4=0 (Производную находим , a уравнение решаем )
Решаем это уравнение и его корни будут экстремумами:x=-2.0. Точка: (-2.0, -1.0)
Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумы функции в точках:-2.0 Максимумов у функции нету
Возрастает на промежутках: [-2.0, oo) Убывает на промежутках: (-oo, -2.0]
Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=2=0 - нет перегибов.
Вертикальные асимптоты Нету Горизонтальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим :lim x^2+4*x+3, x->+oo = oo, значит горизонтальной асимптоты справа не существует lim x^2+4*x+3, x->-oo = oo, значит горизонтальной асимптоты слева не существует Наклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы :lim x^2+4*x+3/x, x->+oo = oo, значит наклонной асимптоты справа не существуетlim x^2+4*x+3/x, x->-oo = -oo, значит наклонной асимптоты слева не существует
Четность и нечетность функции:Проверим функцию четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:x^2+4*x+3 = x^2 - 4*x + 3 - Нет x^2+4*x+3 = -(x^2 - 4*x + 3) - Нет - значит, функция не является ни четной ни нечетной
х 0 1 -1 3 4
у 0 2 -2 6 8
б)х=3 , у=6
х=5 . у=10
х=-3 у=-6
х=-4 у=-8
в)у=8 х= 4
у=4 х=2
у= -2 х=-1
у=1 х= 1/2
2) а) х -3 0 5 -6 7
у 3 0 -5 6 -7
к=-1
б) х 2 1 3 0 -2
у 8 4 12 0 -8
к=4
в) х 2 0 4 -6 -10
у 1 0 2 -3 5
к=1/2
г)х -4 0 -6 -8 16
2 0 3 4 -8
к=-1/2
Второе задание не совсем понятно. В таблице должен быть столбец, где дано одновременно и х и у. У Вас не понятно где этот столбец. Я решила, что у Вас смещено на один столбец. Может это и не так. Посмотрите.