1. Начнем решать задачу "от противного". Если во второй день работы израсходовали от того, что осталось после первого деня, то после второго дня работы осталась от того, что осталось после первого дня работы. По условию, после двух дней работы осталось 2 банки, соответственно =2, из чего следует, что во второй день израсходовали 4 банки с краской (так как 2×2=4). По условию сказано, что в первый день израсходовали половину всех банок +1. Значит, 4 банки - это половина всех банок -1. Соответственно, половина - это 4+1=5. В первый день израсходовали 5+1=6 (банок с краской), во второй день израсходовали 4 (банки с краской), а осталось на третий день еще 2 (банки с краской). Суммируем все количество банок: 6+4+2=12. ответ: всего было куплено 12 банок с краской.
а) (x - 3)(x - 7) - 2x(3x - 5) = x*x - 3*x - 7*x - 3(-7) - 2x*3x - 2x(-5) =
= x^2 - 10x + 21 - 6x^2 + 10x = -5x^2 + 21
б) 4a(a - 2) - (a - 4)^2 = 4a^2 - 8a - (a^2 - 8a + 16) =
= 4a^2 - 8a - a^2 + 8a - 16 = 3a^2 - 16
в) 2(m+1)^2 - 4m = 2(m^2+2m+1) - 4m = 2m^2 + 4m + 2 - 4m = 2m^2 + 2
2) а) Выносим х за скобки и раскладываем разность квадратов
x^3 - 9x = x(x^2 - 9) = x(x - 3)(x + 3)
б) Выносим -5 за скобки и получаем квадрат суммы
-5a^2 - 10ab - 5b^2 = -5(a^2 + 2ab + b^2) = -5(a + b)^2
3) Раскрываем скобки
(y^2 - 2y)^2 - y^2(y + 3)(y - 3) + 2y(2y^2 + 5) =
= y^4 - 4y^3 + 4y^2 - y^2(y^2 - 9) + 4y^3 + 10y =
= y^4 - 4y^3 + 4y^2 - y^4 + 9y^2 + 4y^3 + 10y = 13y^2 + 10y
4) а) Разность квадратов два раза
16x^4 - 81 = (4x^2 - 9)(4x^2 + 9) = (2x - 3)(2x + 3)(4x^2 + 9)
б) Разность квадратов
x^2 - x - y^2 - y = (x^2 - y^2) - (x + y) = (x-y)(x+y) - (x+y) = (x+y)(x-y-1)
5) x^2 - 4x + 9 = x^2 - 4x + 4 + 5 = (x - 2)^2 + 5
При любом х значение квадрата >= 0, а выражения >= 5
ответ: всего было куплено 12 банок с краской.