Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
13 деталей
Объяснение:
Пусть второй рабочий делает за 1 час х деталей, тогда первый рабочий делает за 1 час х+3 деталей.
260 деталей второй рабочий делает за 260/x часов, а первый рабочий за 260/(x+3) часов. Так как первый рабочий работает на 6 часов быстрее, то разница времени равна 6 и получаем следующее уравнение:
260/x – 260/(x+3) = 6.
Отсюда получаем квадратное уравнение:
260•(x+3)–260•x=6•x•(x+3)
260•x+780–260•x=6•x²+18•x
6•x²+18•x–780=0 |:6
x²+3•x–130=0
D=3²–4•1•(–130)=9+520=529=23²
x₁=(–3–23)/2= –13<0 – не подходит,
x₂=(–3+23)/2= 10>0 – подходит.
Значит, второй рабочий делает 10 деталей за 1 час, тогда первый рабочий делает 10+3 = 13 деталей за 1 час.
a ∈ (-oo; -1) U {0} U (1; +oo)
Объяснение:
1) При x < 1 будет |x - 1| = 1 - x
1 - x = ax
1 = ax + x
x = 1/(a+1) < 1
При a = -1 корней нет. При всех других а проверяем неравенство
1/(a+1) - 1 < 0
(1-a-1)/(a+1) < 0
-a/(a+1) < 0
a/(a+1) > 0
a ∈ (-oo; -1) U (0; +oo)
2) При x = 1 будет
|1 - 1| = a*1
a = 0
Подходит, потому что корень только один: x = 1
3) При x > 1 будет |x - 1| = x - 1
x - 1 = ax
x - ax = 1
x = 1/(1-a)
При а = 1 корней нет.
При всех других а проверяем неравенство
1/(1-a) - 1 > 0
(1-1+a)/(1-a) > 0
a/(1-a) > 0
a/(a-1) < 0
a ∈ (0; 1)
Получаем a1 ∈ (-oo; -1) U (0; +oo); a2 ∈ (0; 1)
Промежуток а2 вырезается из промежутков а1.
ответ: a ∈ (-oo; -1) U {0} U (1; +oo)