Cosx=t t²-(3+2p)t+6p=0 D=(3-2p)² Это уравнение всегда имеет корни, да. Но в основном уравнении у нас не t, а cosx. cosx принимает значения от -1 до 1. Значит для того чтобы основное уравнение не имело корней, нужно чтобы все корни уравнения с t лежали вне промежутка [-1; 1]. Иными словами чтобы парабола задаваемая этим уравнением располагалась так как показано на прекрасных рисунках, которые я приложил. 1ый. случай задается системой {f(-1)>0 {f(1)>0 {x0>1 2ой: {f(-1)<0 {f(1)<0 3ий: {f(-1)>0 {f(1)>0 {x0<-1 Решаем эти системы и получаем p∈(-oo;-1/2) U (1/2;+oo).
t²-(3+2p)t+6p=0
D=(3-2p)²
Это уравнение всегда имеет корни, да. Но в основном уравнении у нас не t, а cosx. cosx принимает значения от -1 до 1. Значит для того чтобы основное уравнение не имело корней, нужно чтобы все корни уравнения с t лежали вне промежутка [-1; 1]. Иными словами чтобы парабола задаваемая этим уравнением располагалась так как показано на прекрасных рисунках, которые я приложил.
1ый. случай задается системой
{f(-1)>0
{f(1)>0
{x0>1
2ой:
{f(-1)<0
{f(1)<0
3ий:
{f(-1)>0
{f(1)>0
{x0<-1
Решаем эти системы и получаем p∈(-oo;-1/2) U (1/2;+oo).
20 км/ч и 30 км/ч
Объяснение:
Пусть время, за которое первый катер проходит 60 км равно t ч, тогда время, за которое второй катер проходит 60 км равно t-1 ч.
Значит, скорость первого катера равна 60/t км/ч, а время второго катера равно 60/(t-1) км/ч.
По условию задачи, катера двигались навстречу друг другу и за 1 час вместе 50 км. Составим уравнение:
(60/t + 60/(t-1))*1=50 |*t(t-1)
60(t-1)+60t=50t(t-1)
60t-60+60t=50t²-50t
50t²-170t+60=0 |:10
5t²-17t+6=0
D=(-17)²-4*5*6=289-120=169=13²
t₁=(17+13)/(2*5) = 30/10=3
t₂=(17-13)/(2*5)=4/10=0,4
Если t=3 ч, то t-1=3-1=2 ч
Если t=0,4 ч, то t-1=0,4-1=-0,6 <0 (невозможно, т.к. время не может быть отрицательным)
Следовательно, скорость первого катера равна 60/3=20 км/ч, а скорость второго катера равна 60/2=30 км/ч