Расстояние между двумя пристанями равно 161,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 2,6 ч. лодки встретились. Скорость течения реки равна 2 км/ч.
Скорость лодки в стоячей воде равна?
Сколько километров до места встречи пройдёт лодка, плывущая по течению?
Сколько километров до места встречи пройдёт лодка, плывущая против течения?
В решении.
Объяснение:
Расстояние между двумя пристанями равно 161,2 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 2,6 ч. лодки встретились. Скорость течения реки равна 2 км/ч.
Скорость лодки в стоячей воде равна?
Сколько километров до места встречи пройдёт лодка, плывущая по течению?
Сколько километров до места встречи пройдёт лодка, плывущая против течения?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодки в стоячей воде.
х + 2 - скорость по течению.
х - 2 - скорость против течения.
2,6(х + 2) - расстояние по течению.
2,6(х - 2) - расстояние против течения.
По условию задачи уравнение:
2,6(х + 2) + 2,6(х -2) = 161,2
2,6х + 5,2 + 2,6х - 5,2 = 161,2
5,2х = 161,2
х = 161,2/5,2
х = 31 (км/час) - скорость лодки в стоячей воде.
31 + 2 = 33 (км/час) - скорость по течению.
33 * 2,6 = 85,8 (км) - пройдёт лодка, плывущая по течению.
31 - 2 = 29 (км/час) - скорость против течения.
29 * 2,6 = 75,4 (км) - пройдёт лодка, плывущая против течения.
Проверка:
85,8 + 75,4 = 161,2 (км), верно.
1 формула сложения
Cos (x+п/6) = cosx * cos(п/6) – sinx*sin(п/6)=1/2 cosx - √3/2sinx
2 формула двойного угла
Sinx=4/5 ; cos2x = 1- sin2x = 1-(4/5)2 =1-16/25=9/25 ; cosx =3/5
Sin2x = 2*sinx*cosx =2*4/5*3/5=24/25
3 формула двойного /тройного угла
-sina /(sin2a*sin3a) =
=-sin(3a-2a) /(sin2a*sin3a) =
=- (ctg2a – ctg3a) = ctg3a – ctg2a
4 11x =8x+3x ; 5x =8x -3x
sin11x +sin5x =2*1/2 (sin(8x+3x)+sin(8x-3x)) =2*sin8x*cos3x
5 формула двойного угла
(ctg^2(п/8)-1) / (2ctg(п/8)) = ctg (2*п/8) = ctg (п/4)=ctg 45o =1