Для того чтобы решить задачу, составим таблицу 1 и 2 графа 1 и 2 труба соответственно, колонки работа, производительность, время. Заполним данные о 1 трубе А:90,Р :х, t:90/х 2 труба: А:90,Р:х+1,t:(90/x+1)+1 составим уравнение и решим его 90/х= (90/x+1)+1 преведем к общему знаменателю х(х+1),получим квадратное уравнение х^2+x-90=0, решим его и получим корни х1=9,х2=-10 - не подходит, так производительность не может быть отрицательна ответ: 9 литров в минуту
Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.
1 и 2 графа 1 и 2 труба соответственно, колонки работа, производительность, время.
Заполним данные о 1 трубе А:90,Р :х, t:90/х
2 труба: А:90,Р:х+1,t:(90/x+1)+1
составим уравнение и решим его
90/х= (90/x+1)+1
преведем к общему знаменателю х(х+1),получим квадратное уравнение х^2+x-90=0, решим его и получим корни х1=9,х2=-10 - не подходит, так производительность не может быть отрицательна
ответ: 9 литров в минуту
Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом[1].
Вектор с началом в точке {\displaystyle A}A и концом в точке {\displaystyle B}B принято обозначать как {\displaystyle {\overrightarrow {AB}}}\overrightarrow {AB}. Векторы также могут обозначаться малыми латинскими буквами со стрелкой (иногда — чёрточкой) над ними, например {\displaystyle {\vec {a}}}{\vec {a}}. Другой рас записи: написание символа вектора прямым жирным шрифтом: {\displaystyle \mathbf {a} }{\mathbf {a}}.