В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
danila110420051
danila110420051
05.11.2020 10:21 •  Алгебра

Найдите область выяснения, период графика, промежутки знакопостоянства, экстремумы функции. четный или нечетный график


Найдите область выяснения, период графика, промежутки знакопостоянства, экстремумы функции. четный и

Показать ответ
Ответ:
цццрпппр1
цццрпппр1
02.11.2021 05:26

Відповідь:

2.

 AM=x; BM=3x, то 3х+х=14,8; 4х=14,8; х=3,7

Звідси, АМ=3,7 дм, ВМ=11,1 дм.

3.

- Через любые три точки проходит ровно одна прямая.

- Любые три прямые имеют не менее одной общей точки. Любые две прямые имеют ровно одну общую точку.

- Через любую точку проходит не менее одной прямой.

- Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой

- Если две прямые перпендикулярны третьей прямой, то эти две прямые параллельны.

- Если угол равен 45°, то вертикальный с ним угол равен 45°.

0,0(0 оценок)
Ответ:
Олиф1
Олиф1
20.06.2020 17:51

Для начала упростим имеющееся выражение по формуле произведения синуса на косинус:

\sin\alpha\cos\beta = \dfrac{\sin\left(\alpha + \beta\right) + \sin\left(\alpha - \beta\right)}{2}

В нашем случае получается:

\sin 2x\cdot\cos2x = \dfrac{\sin\left(2x + 2x\right) + \sin\left(2x - 2x\right)}{2} = \dfrac{\sin4x + \sin0}{2} = \boxed{\dfrac{\sin4x}{2}}

Итак, от y = \sin2x\cos2x мы перешли к  y = \dfrac{\sin4x}{2} . Теперь будем рассматривать период. Говоря простым языком, период - это какое-то определённое значение, пройдя которое мы вернёмся в ту же самую точку, из которой начинали движение. Должно выполняться вот это равенство: \underline{f(x) = f\left(x + T\right)} , где T - это и есть этот период. В нашем случае получается вот так:

\boxed{\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x + T\right)}{2}}

Теперь есть два решения этого уравнения. Первый - это муторный и прямолинейный. Просто перенести всё в левую часть, далее через разность синусов и так медленно добираться до периода. Второй намного проще, но надо понимать, что происходит. Дело в том, что T мы изменять не можем, так как это переменная, которую нам надо найти. Зато x мы можем присвоить любое удобное нам значение. Он ни на что не влияет, равенство в рамке продолжает соблюдаться, поскольку мы заменим икс в обеих частях, но всё станет намного проще. Например, здесь удобнее взять \boldsymbol{x = 0}. Нам известно, что \sin0 = 0, и вся левая часть в него превратится. Получится вот так:

\dfrac{\sin\left(4\cdot 0\right)}{2} = \dfrac{\sin4\left(0+T\right)}{2}dfrac{\sin0}{2} = \dfrac{\sin4T}{2}dfrac{\sin4T}{2} = 0

Теперь просто решаем обычное тригонометрическое уравнение и находим T.

\dfrac{\sin4T}{2} = 0sin4T = 04T = \pi kboxed{T = \dfrac{\pi k}{4}}\ \ ,\, k\in\mathbb{Z}

Итак, вот мы к этому и пришли. Возникает вопрос, что делать с k? В условии задания написано, что нужно найти наименьший положительный период данной функции. Так как k\in\mathbb{Z}, то k = \{...\, ,-2,-1,0,1,2,...\}. Положительное число должно быть больше нуля, и очевидно, что \dfrac{\pi k}{4} 0  при k \geqslant 1. Поэтому подставляем наше первое значение: k = 1. При нём получаем:

T_1 = \dfrac{\pi \cdot 1}{4} = \dfrac{\pi}{4}

Но не стоит сразу радоваться. Сначала проверим период на соответствие равенству f\left(x\right) = f\left(x+T_1\right).

\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x+\frac{\pi}{4}\right)}{2}dfrac{\sin4x}{2} = \dfrac{\sin\left(4x +\pi\right)}{2}

Согласно формуле приведения, \sin\left(\pi + \alpha\right) = -\sin\alpha, отсюда имеем:

\dfrac{\sin4x}{2} = -\dfrac{\sin4x}{2}

Равенство не выполнено, значит,  \dfrac{\pi}{4} не является периодом данной функции. Проверяем дальше, k = 2.

T_2 = \dfrac{\pi\cdot 2}{4} = \dfrac{\pi}{2}

Точно так же подставляем в f(x) = f\left(x + T_2\right).

\dfrac{\sin4x}{2} = \dfrac{\sin4\left(x + \frac{\pi}{2}\right)}{2}dfrac{\sin4x}{2} = \dfrac{\sin\left(4x + 2\pi\right)}{2}

По формуле приведения \sin\left(2\pi + \alpha\right) = \sin\alpha, поэтому:

\boxed{\dfrac{\sin4x}{2} = \dfrac{\sin4x}{2}}

А потому T_2 = \dfrac{\pi}{2}  и является искомым периодом.

ответ: В)

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота