Пусть прямые 3x-5y=10 и 2x+ky=9 пересекаются в точке (х₀, у₀),
3x-5y = 10 2x + ky=9
5y = 3x-10 ky = -2x + 9
y = 3/5*x - 2 y = -2/k*x + 9/k / заметим, что k≠0
У первой ф-ции свободный член равен -2, значит прямая пересекается с осью ОУ в точке (0, -2), значит для того чтобы вторая прямая проходила через эту же точку надо, чтобы её координаты удовлетворяли ур-нию второй функции, т.е.
-2 = -2/k*0 + 9/k
-2 = 9/k
k = - 4,5
Если же точка перечения (х₀, у₀) лежит на координатной оси ОХ, значит ордината у₀ = 0, тогда для первой функции
0 = 3/5*x₀ - 2
3/5*x₀ = 2
x₀ =10/3
Подставим x₀ и у₀ во второе уравнение:
0 = -2/k*10/3 + 9/k
2/k*10/3 = 9/k
20/3k = 9/k
20k = 27k | :k (k≠0)
20 = 27 (невнрно => точка пересечения не может лежать на оси ОХ)
ответ: пересекаются в точке принадлежащей оси ОУ при k = - 4,5
Решение: по теореме пифагора сумма квадратов катетов равна квадрату гипотенузы пусть х - наш искомый катет, то второй катет будет х-7, а гипотенуза х+1 составим уравнение: х²+(х-7)² = (х+1)² х²+х²-14х+49 = х²+2х+1 2х²-14х+49 = х²+2х+1 х²-16х+48 = 0
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Пусть прямые 3x-5y=10 и 2x+ky=9 пересекаются в точке (х₀, у₀),
3x-5y = 10 2x + ky=9
5y = 3x-10 ky = -2x + 9
y = 3/5*x - 2 y = -2/k*x + 9/k / заметим, что k≠0
У первой ф-ции свободный член равен -2, значит прямая пересекается с осью ОУ в точке (0, -2), значит для того чтобы вторая прямая проходила через эту же точку надо, чтобы её координаты удовлетворяли ур-нию второй функции, т.е.
-2 = -2/k*0 + 9/k
-2 = 9/k
k = - 4,5
Если же точка перечения (х₀, у₀) лежит на координатной оси ОХ, значит ордината у₀ = 0, тогда для первой функции
0 = 3/5*x₀ - 2
3/5*x₀ = 2
x₀ =10/3
Подставим x₀ и у₀ во второе уравнение:
0 = -2/k*10/3 + 9/k
2/k*10/3 = 9/k
20/3k = 9/k
20k = 27k | :k (k≠0)
20 = 27 (невнрно => точка пересечения не может лежать на оси ОХ)
ответ: пересекаются в точке принадлежащей оси ОУ при k = - 4,5
найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7